Interpreting the action of the endomorphism monoid of the rationals
Algebra i logika, Tome 60 (2021) no. 1, pp. 96-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a first order language we interpret the action of the monoid $M$ of embeddings of $({\mathbb Q}, )$ on the set $\mathbb Q$ inside $(M, \circ)$. A similar result is proved for the monoid $E$ of all endomorphisms of $({\mathbb Q}, \le)$.
Keywords: rationals, monoid of embeddings, monoid of endomorphisms.
@article{AL_2021_60_1_a5,
     author = {J. K. Truss and E. Vargas-Garc{\'\i}a},
     title = {Interpreting the action of the endomorphism monoid of the rationals},
     journal = {Algebra i logika},
     pages = {96--112},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_1_a5/}
}
TY  - JOUR
AU  - J. K. Truss
AU  - E. Vargas-García
TI  - Interpreting the action of the endomorphism monoid of the rationals
JO  - Algebra i logika
PY  - 2021
SP  - 96
EP  - 112
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_1_a5/
LA  - ru
ID  - AL_2021_60_1_a5
ER  - 
%0 Journal Article
%A J. K. Truss
%A E. Vargas-García
%T Interpreting the action of the endomorphism monoid of the rationals
%J Algebra i logika
%D 2021
%P 96-112
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_1_a5/
%G ru
%F AL_2021_60_1_a5
J. K. Truss; E. Vargas-García. Interpreting the action of the endomorphism monoid of the rationals. Algebra i logika, Tome 60 (2021) no. 1, pp. 96-112. http://geodesic.mathdoc.fr/item/AL_2021_60_1_a5/

[1] A. M. W. Glass, Ordered permutation groups, Lond. Math. Soc. Lect. Note Ser., 55, Cambridge Univ. Press, Cambridge etc., 1981 | MR | Zbl

[2] M. Behrisch, J. K. Truss, E. Vargas-Garcia, “Reconstructing the topology on monoids and polymorphism clones of the rationals”, Stud. Log., 105:1 (2017), 65–91 | DOI | MR | Zbl

[3] J. K. Truss, “On recovering structures from quotients of their automorphism groups”, Ordered groups and infinite permutation groups, Partially based on the conf. (Luminy, France, Summer 1993), Math. Appl., Dordr, 354, ed. W. Ch. Holland, Kluwer Acad. Publ., Dordrecht, 1996, 63–95 | MR | Zbl

[4] S. H. McCleary, “Groups of homeomorphisms with manageable automorphism groups”, Commun. Algebra, 6 (1978), 497–528 | DOI | MR | Zbl

[5] Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971 | MR | Zbl