Characterizations of ITBM-computability. II
Algebra i logika, Tome 60 (2021) no. 1, pp. 39-56
We consider different characterizations of computability by means of infinite time Blum–Shub–Smale machines (ITBM) via specific functions on sets and computable infinitary formulas.
Keywords:
computability by means of Blum–Shub–Smale machines, infinitary formulas.
@article{AL_2021_60_1_a2,
author = {P. Koepke and A. S. Morozov},
title = {Characterizations of {ITBM-computability.} {II}},
journal = {Algebra i logika},
pages = {39--56},
year = {2021},
volume = {60},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2021_60_1_a2/}
}
P. Koepke; A. S. Morozov. Characterizations of ITBM-computability. II. Algebra i logika, Tome 60 (2021) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/AL_2021_60_1_a2/
[1] P. Kepke, A. S. Morozov, “Kharakterizatsii ITBM-vychislimosti. I”, Algebra i logika, 59:6 (2020), 627–648 | MR
[2] P. Kepke, A. S. Morozov, “O vychislitelnykh vozmozhnostyakh mashin Blyum–Shuba–Smeila, rabotayuschikh v beskonechnom vremeni”, Algebra i logika, 56:1 (2017), 55–92 | MR
[3] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl