Characterizations of ITBM-computability. II
Algebra i logika, Tome 60 (2021) no. 1, pp. 39-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider different characterizations of computability by means of infinite time Blum–Shub–Smale machines (ITBM) via specific functions on sets and computable infinitary formulas.
Keywords: computability by means of Blum–Shub–Smale machines, infinitary formulas.
@article{AL_2021_60_1_a2,
     author = {P. Koepke and A. S. Morozov},
     title = {Characterizations of {ITBM-computability.} {II}},
     journal = {Algebra i logika},
     pages = {39--56},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_1_a2/}
}
TY  - JOUR
AU  - P. Koepke
AU  - A. S. Morozov
TI  - Characterizations of ITBM-computability. II
JO  - Algebra i logika
PY  - 2021
SP  - 39
EP  - 56
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_1_a2/
LA  - ru
ID  - AL_2021_60_1_a2
ER  - 
%0 Journal Article
%A P. Koepke
%A A. S. Morozov
%T Characterizations of ITBM-computability. II
%J Algebra i logika
%D 2021
%P 39-56
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_1_a2/
%G ru
%F AL_2021_60_1_a2
P. Koepke; A. S. Morozov. Characterizations of ITBM-computability. II. Algebra i logika, Tome 60 (2021) no. 1, pp. 39-56. http://geodesic.mathdoc.fr/item/AL_2021_60_1_a2/

[1] P. Kepke, A. S. Morozov, “Kharakterizatsii ITBM-vychislimosti. I”, Algebra i logika, 59:6 (2020), 627–648 | MR

[2] P. Kepke, A. S. Morozov, “O vychislitelnykh vozmozhnostyakh mashin Blyum–Shuba–Smeila, rabotayuschikh v beskonechnom vremeni”, Algebra i logika, 56:1 (2017), 55–92 | MR

[3] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl