Piecewise monotonicity for unary functions in $o$-stable groups
Algebra i logika, Tome 60 (2021) no. 1, pp. 23-38
Unary functions definable in $o$-stable ordered groups of nonvaluational type are studied. Such functions are proved to be piecewise monotone and continuous.
Keywords:
$o$-stable groups, unary functions.
@article{AL_2021_60_1_a1,
author = {V. V. Verbovskiy and A. B. Dauletiyarova},
title = {Piecewise monotonicity for unary functions in $o$-stable groups},
journal = {Algebra i logika},
pages = {23--38},
year = {2021},
volume = {60},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2021_60_1_a1/}
}
V. V. Verbovskiy; A. B. Dauletiyarova. Piecewise monotonicity for unary functions in $o$-stable groups. Algebra i logika, Tome 60 (2021) no. 1, pp. 23-38. http://geodesic.mathdoc.fr/item/AL_2021_60_1_a1/
[1] V. V. Verbovskii, “Uporyadochenno stabilnye gruppy”, Matem. tr., 13:2 (2010), 84–127 | Zbl
[2] V. V. Verbovskiy, “On ordered groups of Morley o-rank 1”, Sib. elektron. matem. izv., 15 (2018), 314–320 http://semr.math.nsc.ru/v15/p314-320.pdf | MR
[3] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl
[4] J. Goodrick, “A monotonicity theorem for dp-minimal densely ordered groups”, J. Symb. Log., 75:1 (2010), 221–238 | DOI | MR | Zbl
[5] B. S. Baizhanov, V. V. Verbovskii, “Uporyadochenno stabilnye teorii”, Algebra i logika, 50:3 (2011), 303–325 | MR | Zbl