Two problems for solvable and nilpotent groups
Algebra i logika, Tome 59 (2020) no. 6, pp. 719-733.

Voir la notice de l'article provenant de la source Math-Net.Ru

Section 1 gives a brief review of known results on embeddings of solvable, nilpotent, and polycyclic groups in $2$-generated groups from these classes, including the description of the author's recently obtained solution to the Mikaelian–Ol'schanskii problem on embeddings of finitely generated solvable groups of derived length $l$ in solvable groups of derived length $l+1$ with a fixed small number of generators. Section 2 contains a somewhat more extensive review of known results on the rational subset membership problem for groups, including the presentation of the author's recently obtained solution to the Laurie–Steinberg–Kambites–Silva–Zetsche problem of whether the membership problem is decidable for finitely generated submonoids of free nilpotent groups.
@article{AL_2020_59_6_a5,
     author = {V. A. Roman'kov},
     title = {Two problems for solvable and nilpotent groups},
     journal = {Algebra i logika},
     pages = {719--733},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_6_a5/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Two problems for solvable and nilpotent groups
JO  - Algebra i logika
PY  - 2020
SP  - 719
EP  - 733
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_6_a5/
LA  - ru
ID  - AL_2020_59_6_a5
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Two problems for solvable and nilpotent groups
%J Algebra i logika
%D 2020
%P 719-733
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_6_a5/
%G ru
%F AL_2020_59_6_a5
V. A. Roman'kov. Two problems for solvable and nilpotent groups. Algebra i logika, Tome 59 (2020) no. 6, pp. 719-733. http://geodesic.mathdoc.fr/item/AL_2020_59_6_a5/

[1] A. Cayley, “On the theory of groups, as depending on the symbolic equation $\theta^n=1$”, London, Edinburgh, Dublin Philos. Mag. J. Sci., 7:42 (1854), 40–47 | DOI

[2] W. Burnside, Theory of groups of finite order, Univ. Press, Cambridge, 1897 | MR | Zbl

[3] G. Higman, B. H. Neumann, H. Neumann, “Embedding theorems for groups”, J. Lond. Math. Soc., 24:4 (1950), 247–254 | DOI | MR | Zbl

[4] B. H. Neumann, H. Neumann, “Embedding theorems for groups”, J. Lond. Math. Soc., 34 (1959), 465–479 | DOI | MR | Zbl

[5] P. Hall, “On the finiteness of certain soluble groups”, Proc. Lond. Math. Soc., III. Ser., 9 (1959), 595–622 | DOI | MR | Zbl

[6] P. Hall, “Nilpotent groups”, Notes of lectures given at the Canadian Mathematical Congress, Summer Sem., Univ. Alberta (Edmonton, 12-30 August, 1957), Queen Mary College Math. Notes, Queen Mary College (Univ. London), London, 1969 | MR | Zbl

[7] V. A. Roman'kov, Essays in group theory and cryptology: solvable groups, Dostoevsky Omsk state univ. publ. house, Omsk, 2017

[8] V. A. Romankov, “Teoremy vlozheniya dlya nilpotentnykh grupp”, Sib. matem. zh., 13:4 (1972), 859–867 | MR

[9] V. A. Romankov, “O vlozhenii politsiklicheskikh grupp”, Matem. zametki, 14:5 (1973), 741–744 | MR

[10] G. A. Noskov, V. N. Remeslennikov, V. A. Romankov, “Beskonechnye gruppy”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 17, VINITI, M., 1979, 65–157 | MR

[11] V. H. Mikaelian, A. Y. Olshanskii, “On abelian subgroups of finitely generated metabelian groups”, J. Group Theory, 16:5 (2013), 695–705 | DOI | MR | Zbl

[12] Unsolved problems in group theory. The Kourovka notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/ãlglog/19tkt.pdf

[13] R. H. Gilman, “Formal languages and infinite groups”, Geometric and computational perspectives on infinite groups, Proc. of a joint DIMACS/Geometry Center workshop (January 3–14, 1994, Univ. Minnesota, Minneapolis, MN, USA; March 17–20, 1994, DIMACS, Princeton, NJ, USA), DIMACS, Ser. Discrete Math. Theor. Comput. Sci., 25, eds. G. Baumslag et al., Am. Math. Soc., Providence, RI, 1996, 27–51 | DOI | MR | Zbl

[14] V. A. Romankov, Ratsionalnye podmnozhestva v gruppakh, Izd-vo Omsk. gos. un-ta, Omsk, 2014

[15] M. Lohrey, “The rational subset membership problem for groups: a survey”, Groups St Andrews 2013. Selected papers of the conference (St. Andrews, UK, August 3–11, 2013), Lond. Math. Soc. Lecture Note Ser., 422, eds. C. M. Campbell et al., Cambridge Univ. Press, Cambridge, 2015, 368–389 | MR | Zbl

[16] M. Lohrey, B. Steinberg, G. Zetsche, “Rational subsets in groups”, Vanderbild Univ. Sem. (14 June 2013) https://math.vanderbilt.edu/sapirmv/stuart/lohrey.pdf

[17] B. Steinberg, “The submonoid Membership Problem for Groups”, City College of New York Sem. (New York, 22 June 2013)

[18] V. A. Roman'kov, “On the occurence problem for rational subsets of a group”, Kombinatornye i vychislitelnye metody v matematike, ed. V. A. Romankov, OmGU, Omsk, 1999, 235–242

[19] M. Benois, “Parties rationnelles du groupe libre”, C. R. Acad. Sci. Paris, Sér. A, 269 (1969), 1188–1190 | MR | Zbl

[20] S. Eilenberg, M. P. Sch{ü}tzenberger, “Rational sets in commutative monoids”, J. Algebra, 13 (1969), 173–191 | DOI | MR | Zbl

[21] Z. Grunschlag, Algorithms in geometric group theory, PhD Thesis, Univ. California, Berkley, 1999 | MR

[22] M. Yu. Nedbai, “Problema vkhozhdeniya v ratsionalnye podmnozhestva konechno porozhdennykh abelevykh grupp”, Vest. Omsk. un-ta, 1999, no. 3, 37–41

[23] M. Cadilhac, D. Chistikov, G. Zetzsche, “Rational subsets of Baumslag–Solitar groups”, 47th Int. Colloq. Automata, Lang. Program. ICALP 2020 (July 8–11, 2020, Saarbr{ü}cken, Germany), LIPIcs, 168, eds. A. Czumaj et al., 2020 (Virtual conf.) https://drops.dagstuhl.de/opus/volltexte/2020/12523/pdf/LIPIcs-ICALP-2020-116.pdf

[24] M. Kambites, P. V. Silva, B. Steinberg, “On the rational subset problem for groups”, J. Algebra, 309:2 (2007), 622–639 | DOI | MR | Zbl

[25] K. A. Mikhailova, “Problema vkhozhdeniya dlya pryamykh proizvedenii grupp”, Dokl. AN SSSR, 119:6 (1958), 1103–1105 | Zbl

[26] E. Rips, “Subgroups of small cancellation groups”, Bull. Lond. Math. Soc., 14:1 (1982), 45–47 | DOI | MR | Zbl

[27] I. Kapovich, R. Weidmann, A. Myasnikov, “Foldings, graphs of groups and the membership problem”, Int. J. Algebra Comput., 15:1 (2005), 95–128 | DOI | MR | Zbl

[28] M. Lohrey, B. Steinberg, “The submonoid and rational subset membership problems for graph groups”, J. Algebra, 320:2 (2008), 728–755 | DOI | MR | Zbl

[29] M. Lohrey, B. Steinberg, G. Zetzsche, “Rational subsets and submonoids of wreath products”, Inf. Comput., 243 (2015), 191–204 | DOI | MR | Zbl

[30] V. A. Romankov, “O ratsionalnosti verbalnykh podmnozhestv v razreshimykh gruppakh”, Algebra i logika, 57:1 (2018), 57–72 | MR | Zbl

[31] M. Lohrey, B. Steinberg, “Tilings and submonoids of metabelian groups”, Theory Comput. Syst., 48:2 (2011), 411–427 | DOI | MR | Zbl

[32] M. Lohrey, “Rational subsets of unitriangular groups”, Int. J. Algebra Comput., 25:1/2 (2015), 113–121 | DOI | MR | Zbl

[33] A. Myasnikov, V. Roman'kov, “On rationality of verbal subsets in a group”, Theory Comput. Syst., 52:4 (2013), 587–598 | DOI | MR | Zbl

[34] V. Roman'kov, “Polycyclic, metabelian or soluble of type ${\rm (FP)}_{\infty}$ groups with Boolean algebra of rational sets and biautomatic soluble groups are virtually abelian”, Glasg. Math. J., 60:1 (2018), 209–218 | DOI | MR | Zbl

[35] S. W. Margolis, J. Meakin, Z. Šuniḱ, “Distortion functions and the membership problem for submonoids of groups and monoids”, Geometric methods in group theory, Papers of the AMS special session on geometric group theory (Boston, MA, USA, October 5–6, 2002) and of the special session at the 1st joint meeting of the AMS and the RSMA (Seville, Spain, June 18–21, 2003), Contemp. Math., 372, eds. J. Burillo et al., Am. Math. Soc., Providence, RI, 2005, 109–129 | DOI | MR | Zbl

[36] F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev, I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, Complexity and randomness in group theory, GAGTA book, 1, De Gruyter, Berlin, 2020 | MR | Zbl

[37] Yu. V. Matiyasevich, “Diofantovo predstavlenie perechislimykh predikatov”, Izv. AN SSSR. Ser. matem., 35:1 (1971), 3–30 \pagebreak | Zbl

[38] Yu. V. Matiyasevich, “Some purely mathematical results inspired by mathematical logic”, Logic, Found. Math., Comput. Theory, Proc. 5th Int. Congr. (London/Ontario 1975), v. 1, 1977, 121–127 | DOI | MR | Zbl