Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_6_a4, author = {A. D. Yashin}, title = {Irreflexive modality on a chain of type $\omega$ and {Novikov} completeness}, journal = {Algebra i logika}, pages = {702--718}, publisher = {mathdoc}, volume = {59}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_6_a4/} }
A. D. Yashin. Irreflexive modality on a chain of type $\omega$ and Novikov completeness. Algebra i logika, Tome 59 (2020) no. 6, pp. 702-718. http://geodesic.mathdoc.fr/item/AL_2020_59_6_a4/
[1] P. S. Novikov, Konstruktivnaya matematicheskaya logika s tochki zreniya klassicheskoi, Matem. logika i osnovaniya matem., Nauka, M., 1977
[2] D. P. Skvortsov, “Ob intuitsionistskom ischislenii vyskazyvanii s dopolnitelnoi logicheskoi svyazkoi”, Issledovaniya po neklassicheskim logikam i formalnym sistemam, Nauka, M., 1983, 154–173
[3] Ya. S. Smetanich, “O polnote ischisleniya vyskazyvanii s dopolnitelnoi operatsiei ot odnoi peremennoi”, Tr. MMO, 9, 1960, 357–371
[4] Ya. S. Smetanich, “Ob ischisleniyakh vyskazyvanii s dopolnitelnoi operatsiei”, Dokl. AN SSSR, 139:2 (1961), 309–312 | Zbl
[5] M. Dummett, “A propositional calculus with denumerable matrix”, J. Symb. Log., 24:1 (1959), 97–106 | DOI | MR | Zbl
[6] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl
[7] A. D. Yashin, “Irrefleksivnaya modalnost kak novaya logicheskaya svyazka v logike Dammeta”, Sib. matem. zh., 55:1 (2014), 228–234 | MR | Zbl
[8] A. Yashin, “Dummett logic, irreflexive modality and Novikov completeness”, Larisa Maksimova on implication, interpolation, and definability, Outst. Contrib. Log., 15, ed. S. Odintsov, Springer, Cham, 2018, 319–337 | DOI | MR | Zbl
[9] R. I. Goldblatt, “Metamathematics of modal logic. I”, Rep. Math. Logic, 6 (1976), 41–77 | MR | Zbl
[10] R. I. Goldblatt, “Metamathematics of modal logic. II”, Rep. Math. Logic, 7 (1976), 21–52 | MR
[11] D. M. Gabbay, “On some new intuitionistic propositional connectives. I”, Stud. Log., 36:1/2 (1977), 127–139 | DOI | MR | Zbl