Axiomatizability of the class of subdirectly irreducible acts over an Abelian group
Algebra i logika, Tome 59 (2020) no. 5, pp. 582-593.

Voir la notice de l'article provenant de la source Math-Net.Ru

Abelian groups are described over which the class of all subdirectly irreducible acts is axiomatizable. Also some properties of subdirectly irreducible acts over Abelian groups are studied. It is proved that all connected acts over an Abelian group are subdirectly irreducible iff the group is totally ordered.
Keywords: axiomatizable class of algebras, act over group, subdirectly irreducible act over group.
@article{AL_2020_59_5_a4,
     author = {A. A. Stepanova and D. O. Ptakhov},
     title = {Axiomatizability of the class of subdirectly irreducible acts over an {Abelian} group},
     journal = {Algebra i logika},
     pages = {582--593},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a4/}
}
TY  - JOUR
AU  - A. A. Stepanova
AU  - D. O. Ptakhov
TI  - Axiomatizability of the class of subdirectly irreducible acts over an Abelian group
JO  - Algebra i logika
PY  - 2020
SP  - 582
EP  - 593
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a4/
LA  - ru
ID  - AL_2020_59_5_a4
ER  - 
%0 Journal Article
%A A. A. Stepanova
%A D. O. Ptakhov
%T Axiomatizability of the class of subdirectly irreducible acts over an Abelian group
%J Algebra i logika
%D 2020
%P 582-593
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_5_a4/
%G ru
%F AL_2020_59_5_a4
A. A. Stepanova; D. O. Ptakhov. Axiomatizability of the class of subdirectly irreducible acts over an Abelian group. Algebra i logika, Tome 59 (2020) no. 5, pp. 582-593. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a4/

[1] V. Gould, A. V. Mikhalev, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva svobodnykh, proektivnykh i ploskikh $S$-poligonov”, Fundament. i prikl. matem., 14:7 (2008), 63–110

[2] A. A. Stepanova, “Aksiomatiziruemost i polnota nekotorykh klassov $S$-poligonov”, Algebra i logika, 30:5 (1991), 583–594 | MR | Zbl

[3] V. Gould, “Axiomatisability problems for $S$-systems”, J. Lond. Math. Soc., II. Ser., 35 (1987), 193–201 | DOI | MR

[4] A. V. Mikhalev, E. V. Ovchinnikova, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva regulyarnykh poligonov”, Fundament. i prikl. matem., 10:4 (2004), 107–157 | Zbl

[5] A. A. Stepanova, “Aksiomatiziruemost i modelnaya polnota klassa regulyarnykh poligonov”, Sib. matem. zh., 35:1 (1994), 181–193 | MR | Zbl

[6] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, With applications to wreath products and graphs. A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[7] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969

[8] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR