Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
Algebra i logika, Tome 59 (2020) no. 5, pp. 567-581
Voir la notice de l'article provenant de la source Math-Net.Ru
Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$ are considered.
Keywords:
distance-regular graphs, strongly regular graphs, graph automorphisms.
@article{AL_2020_59_5_a3,
author = {A. A. Makhnev and M. P. Golubyatnikov},
title = {Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$},
journal = {Algebra i logika},
pages = {567--581},
publisher = {mathdoc},
volume = {59},
number = {5},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/}
}
TY - JOUR
AU - A. A. Makhnev
AU - M. P. Golubyatnikov
TI - Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
JO - Algebra i logika
PY - 2020
SP - 567
EP - 581
VL - 59
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/
LA - ru
ID - AL_2020_59_5_a3
ER -
A. A. Makhnev; M. P. Golubyatnikov. Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$. Algebra i logika, Tome 59 (2020) no. 5, pp. 567-581. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/