@article{AL_2020_59_5_a3,
author = {A. A. Makhnev and M. P. Golubyatnikov},
title = {Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$},
journal = {Algebra i logika},
pages = {567--581},
year = {2020},
volume = {59},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/}
}
TY - JOUR
AU - A. A. Makhnev
AU - M. P. Golubyatnikov
TI - Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
JO - Algebra i logika
PY - 2020
SP - 567
EP - 581
VL - 59
IS - 5
UR - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/
LA - ru
ID - AL_2020_59_5_a3
ER -
A. A. Makhnev; M. P. Golubyatnikov. Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$. Algebra i logika, Tome 59 (2020) no. 5, pp. 567-581. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb., 3. Folge, 18, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[2] A. A. Makhnev, M. S. Nirova, “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Matem. zametki, 103:5 (2018), 730–744 | MR | Zbl
[3] A. A. Makhnev, M. P. Golubyatnikov, Wenbin Guo, “Inverse problems in distance-regular graphs: nets”, Commun. Math. Statist., 7:1 (2019), 69–83 | DOI | MR | Zbl
[4] K. S. Efimov, A. A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$”, Ural Math. J., 4:2 (2018), 69–78 | DOI | MR | Zbl
[5] R. C. Bose, T. A. Dowling, “A generalization of Moore graphs of diameter two”, J. Comb. Theory, Ser. B, 11 (1971), 213–226 | DOI | MR | Zbl
[6] A. L. Gavrilyuk, A. A. Makhnev, “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 583–587 | Zbl