Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
Algebra i logika, Tome 59 (2020) no. 5, pp. 567-581.

Voir la notice de l'article provenant de la source Math-Net.Ru

Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$ are considered.
Keywords: distance-regular graphs, strongly regular graphs, graph automorphisms.
@article{AL_2020_59_5_a3,
     author = {A. A. Makhnev and M. P. Golubyatnikov},
     title = {Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$},
     journal = {Algebra i logika},
     pages = {567--581},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. P. Golubyatnikov
TI  - Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
JO  - Algebra i logika
PY  - 2020
SP  - 567
EP  - 581
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/
LA  - ru
ID  - AL_2020_59_5_a3
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. P. Golubyatnikov
%T Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$
%J Algebra i logika
%D 2020
%P 567-581
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/
%G ru
%F AL_2020_59_5_a3
A. A. Makhnev; M. P. Golubyatnikov. Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$. Algebra i logika, Tome 59 (2020) no. 5, pp. 567-581. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb., 3. Folge, 18, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[2] A. A. Makhnev, M. S. Nirova, “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Matem. zametki, 103:5 (2018), 730–744 | MR | Zbl

[3] A. A. Makhnev, M. P. Golubyatnikov, Wenbin Guo, “Inverse problems in distance-regular graphs: nets”, Commun. Math. Statist., 7:1 (2019), 69–83 | DOI | MR | Zbl

[4] K. S. Efimov, A. A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$”, Ural Math. J., 4:2 (2018), 69–78 | DOI | MR | Zbl

[5] R. C. Bose, T. A. Dowling, “A generalization of Moore graphs of diameter two”, J. Comb. Theory, Ser. B, 11 (1971), 213–226 | DOI | MR | Zbl

[6] A. L. Gavrilyuk, A. A. Makhnev, “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 583–587 | Zbl