Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_5_a3, author = {A. A. Makhnev and M. P. Golubyatnikov}, title = {Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$}, journal = {Algebra i logika}, pages = {567--581}, publisher = {mathdoc}, volume = {59}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/} }
TY - JOUR AU - A. A. Makhnev AU - M. P. Golubyatnikov TI - Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$ JO - Algebra i logika PY - 2020 SP - 567 EP - 581 VL - 59 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/ LA - ru ID - AL_2020_59_5_a3 ER -
A. A. Makhnev; M. P. Golubyatnikov. Automorphisms of a graph with intersection array $\{nm-1, nm-n+m-1,n-m+1;1,1,nm-n+m-1\}$. Algebra i logika, Tome 59 (2020) no. 5, pp. 567-581. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a3/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb., 3. Folge, 18, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[2] A. A. Makhnev, M. S. Nirova, “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Matem. zametki, 103:5 (2018), 730–744 | MR | Zbl
[3] A. A. Makhnev, M. P. Golubyatnikov, Wenbin Guo, “Inverse problems in distance-regular graphs: nets”, Commun. Math. Statist., 7:1 (2019), 69–83 | DOI | MR | Zbl
[4] K. S. Efimov, A. A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$”, Ural Math. J., 4:2 (2018), 69–78 | DOI | MR | Zbl
[5] R. C. Bose, T. A. Dowling, “A generalization of Moore graphs of diameter two”, J. Comb. Theory, Ser. B, 11 (1971), 213–226 | DOI | MR | Zbl
[6] A. L. Gavrilyuk, A. A. Makhnev, “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 583–587 | Zbl