General recursive realizability and basic logic
Algebra i logika, Tome 59 (2020) no. 5, pp. 542-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved.
Keywords: realizability, absolute realizability, subrecursive realizability, basic logic.
@article{AL_2020_59_5_a2,
     author = {A. Yu. Konovalov},
     title = {General recursive realizability and basic logic},
     journal = {Algebra i logika},
     pages = {542--566},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a2/}
}
TY  - JOUR
AU  - A. Yu. Konovalov
TI  - General recursive realizability and basic logic
JO  - Algebra i logika
PY  - 2020
SP  - 542
EP  - 566
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a2/
LA  - ru
ID  - AL_2020_59_5_a2
ER  - 
%0 Journal Article
%A A. Yu. Konovalov
%T General recursive realizability and basic logic
%J Algebra i logika
%D 2020
%P 542-566
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_5_a2/
%G ru
%F AL_2020_59_5_a2
A. Yu. Konovalov. General recursive realizability and basic logic. Algebra i logika, Tome 59 (2020) no. 5, pp. 542-566. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a2/

[1] S. S. Kleene, “On the interpretation of intuitionistic number theory”, J. Symb. Log., 10 (1945), 109–124 | DOI | MR | Zbl

[2] Z. Damnjanovic, “Strictly primitive recursive realizability. I”, J. Symb. Log., 59:4 (1994), 1210–1227 | DOI | MR | Zbl

[3] S. Salehi, “A generalized realizability for constructive arithmetic”, Bull. Symb. Log., 7 (2001), 147–148 | MR

[4] Z. Damnjanovic, “Minimal realizability of intuitionistic arithmetic and elementary analysis”, J. Symb. Log., 60:4 (1995), 1208–1241 | DOI | MR | Zbl

[5] D. A. Viter, Primitivno-rekursivnaya realizuemost i logika predikatov, dep. v VINITI 06.08.2001, No 1830-V2001, M., 86 pp.

[6] D. A. Viter, Primitivno-rekursivnaya realizuemost i konstruktivnaya teoriya modelei, diss. kand. fiz.-mat. nauk, MGU, M., 2001

[7] Pak Ben Kha, Minimalnaya realizuemost i logika predikatov, dep. v VINITI 05.11.2002, No 1896-V2002, M., 2002, 28 pp.

[8] Pak Ben Kha, Strogo primitivno rekursivnaya realizuemost i logika predikatov, dep. v VINITI 04.02.2003, No 218-V2003, 2003, 30 pp.

[9] W. Ruitenburg, “Basic predicate calculus”, Notre Dame J. Formal Logic, 39:1 (1998), 18–46 | DOI | MR | Zbl

[10] S. Salehi, “Provably total functions of Basic Arithmetic”, Math. Log. Quart., 49:3 (2003), 316–322 | DOI | MR | Zbl

[11] A. Yu. Konovalov, “Arifmeticheskaya realizuemost i bazisnaya logika”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 1, 52–56 | Zbl

[12] A. Yu. Konovalov, “Arifmeticheskaya realizuemost i primitivno-rekursivnaya realizuemost”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 4, 60–64 | Zbl

[13] A. Yu. Konovalov, V. E. Plisko, “O giperarifmeticheskoi realizuemosti”, Matem. zametki, 98:5 (2015), 725–746 | MR | Zbl

[14] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972

[15] V. E. Plisko, “Absolyutnaya realizuemost predikatnykh formul”, Izv. AN SSSP, Ser. matem., 47:2 (1983), 315–334 | MR