Associative algebras with a distributive lattice of subalgebras
Algebra i logika, Tome 59 (2020) no. 5, pp. 517-528

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a full description of associative algebras over an arbitrary field, whose subalgebra lattice is distributive. All such algebras are commutative, their nil-radical is at most two-dimensional, and the factor algebra with respect to the nil-radical is an algebraic extension of the base field.
Keywords: lattice of subalgebras, distributive lattice, lattice of subextensions of field.
@article{AL_2020_59_5_a0,
     author = {A. G. Gein},
     title = {Associative algebras with a distributive lattice of subalgebras},
     journal = {Algebra i logika},
     pages = {517--528},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_5_a0/}
}
TY  - JOUR
AU  - A. G. Gein
TI  - Associative algebras with a distributive lattice of subalgebras
JO  - Algebra i logika
PY  - 2020
SP  - 517
EP  - 528
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_5_a0/
LA  - ru
ID  - AL_2020_59_5_a0
ER  - 
%0 Journal Article
%A A. G. Gein
%T Associative algebras with a distributive lattice of subalgebras
%J Algebra i logika
%D 2020
%P 517-528
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_5_a0/
%G ru
%F AL_2020_59_5_a0
A. G. Gein. Associative algebras with a distributive lattice of subalgebras. Algebra i logika, Tome 59 (2020) no. 5, pp. 517-528. http://geodesic.mathdoc.fr/item/AL_2020_59_5_a0/