The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$
Algebra i logika, Tome 59 (2020) no. 4, pp. 471-479.

Voir la notice de l'article provenant de la source Math-Net.Ru

We point out possible automorphisms of a distance-regular graph $\Gamma$ with intersection array $\{55,54,2;1,1,54\}$ and spectrum $55^1,7^{1617},-1^{110},-8^{1408}$.
Keywords: Moore graph, distance-regular graph
Mots-clés : automorphism.
@article{AL_2020_59_4_a3,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {The largest {Moore} graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$},
     journal = {Algebra i logika},
     pages = {471--479},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_4_a3/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$
JO  - Algebra i logika
PY  - 2020
SP  - 471
EP  - 479
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_4_a3/
LA  - ru
ID  - AL_2020_59_4_a3
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$
%J Algebra i logika
%D 2020
%P 471-479
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_4_a3/
%G ru
%F AL_2020_59_4_a3
A. A. Makhnev; D. V. Paduchikh. The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$. Algebra i logika, Tome 59 (2020) no. 4, pp. 471-479. http://geodesic.mathdoc.fr/item/AL_2020_59_4_a3/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb., 3. Folge, 18, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[2] R. M. Damerell, “On Moore graphs”, Math. Proc. Camb. Philos. Soc., 74 (1973), 227–236 | DOI | MR | Zbl

[3] A. A. Makhnev, M. S. Nirova, “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Matem. zametki, 103:5 (2018), 730–744 | MR | Zbl

[4] P. J. Cameron, Permutation groups, Lond. Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[5] A. L. Gavrilyuk, A. A. Makhnev, “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 583–587 | Zbl