Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2020_59_4_a3, author = {A. A. Makhnev and D. V. Paduchikh}, title = {The largest {Moore} graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$}, journal = {Algebra i logika}, pages = {471--479}, publisher = {mathdoc}, volume = {59}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2020_59_4_a3/} }
TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh TI - The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$ JO - Algebra i logika PY - 2020 SP - 471 EP - 479 VL - 59 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2020_59_4_a3/ LA - ru ID - AL_2020_59_4_a3 ER -
A. A. Makhnev; D. V. Paduchikh. The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$. Algebra i logika, Tome 59 (2020) no. 4, pp. 471-479. http://geodesic.mathdoc.fr/item/AL_2020_59_4_a3/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb., 3. Folge, 18, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[2] R. M. Damerell, “On Moore graphs”, Math. Proc. Camb. Philos. Soc., 74 (1973), 227–236 | DOI | MR | Zbl
[3] A. A. Makhnev, M. S. Nirova, “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Matem. zametki, 103:5 (2018), 730–744 | MR | Zbl
[4] P. J. Cameron, Permutation groups, Lond. Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[5] A. L. Gavrilyuk, A. A. Makhnev, “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 583–587 | Zbl