Intersections of nilpotent subgroups in finite groups with sporadic socle
Algebra i logika, Tome 59 (2020) no. 4, pp. 458-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any nilpotent subgroups $A$ and $B$ in a finite group $G$ with sporadic socle, there is an element $g$ such that $A\bigcap B^g=1$.
Mots-clés : sporadic group
Keywords: nilpotent subgroup, intersections of subgroups.
@article{AL_2020_59_4_a2,
     author = {V. I. Zenkov},
     title = {Intersections of nilpotent subgroups in finite groups with sporadic socle},
     journal = {Algebra i logika},
     pages = {458--470},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_4_a2/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - Intersections of nilpotent subgroups in finite groups with sporadic socle
JO  - Algebra i logika
PY  - 2020
SP  - 458
EP  - 470
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_4_a2/
LA  - ru
ID  - AL_2020_59_4_a2
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T Intersections of nilpotent subgroups in finite groups with sporadic socle
%J Algebra i logika
%D 2020
%P 458-470
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_4_a2/
%G ru
%F AL_2020_59_4_a2
V. I. Zenkov. Intersections of nilpotent subgroups in finite groups with sporadic socle. Algebra i logika, Tome 59 (2020) no. 4, pp. 458-470. http://geodesic.mathdoc.fr/item/AL_2020_59_4_a2/

[1] V. I. Zenkov, “Peresecheniya abelevykh podgrupp v konechnykh gruppakh”, Matem. zametki, 56:2 (1994), 150–152 | Zbl

[2] V. I. Zenkov, “O peresecheniyakh primarnykh podgrupp v gruppe ${\rm Aut}~(L_n(2))$”, Tr. IMM UrO RAN, 21, no. 1, 2015, 105–111

[3] V. I. Zenkov, V. D. Mazurov, “O peresechenii silovskikh podgrupp v konechnykh gruppakh”, Algebra i logika, 35:4 (1996), 424–432 | MR | Zbl

[4] V. I. Zenkov, “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundament. i prikl. matem., 2:1 (1996), 1–92 | MR | Zbl

[5] V. I. Zenkov, “O peresecheniyakh nilpotentnykh podgrupp v konechnykh simmetricheskikh i znakoperemennykh gruppakh”, Tr. IMM UrO RAN, 19, no. 3, 2013, 145–149

[6] A. R. Jamali, M. Viseh, “On nilpotent subgroups containing nontrivial normal subgroups”, J. Group Theory, 13:3 (2010), 411–416 | DOI | MR | Zbl

[7] V. I. Zenkov, “O peresecheniyakh dvukh nilpotentnykh podgrupp v konechnykh gruppakh s tsokolem $L_2(q)$”, Sib. matem. zh., 57:6 (2016), 1280–1290 | MR | Zbl

[8] V. I. Zenkov, “O peresechenii dvukh nilpotentnykh podgrupp v nebolshikh konechnykh gruppakh”, Sib. elektron. matem. izv., 13 (2016), 1099–1115 http://semr.math.nsc.ru/v13/p1099-1115.pdf | Zbl

[9] V. I. Zenkov, “O peresechenii dvukh nilpotentnykh podgrupp v konechnoi gruppe s tsokolem $\Omega_8^+(2)$, $E_6(2)$ ili $E_7(2)$”, Sib. elektron. matem. izv., 14 (2017), 1424–1433 http://semr.math.nsc.ru/v14/p1424-1433.pdf | Zbl

[10] D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Am. Math. Soc., 42, Am. Math. Soc., Providence, RI, 1983 | MR

[11] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Chapter A: Almost simple $K$-groups, v. I, Math. Surv. Monogr., 40, no. 3, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[12] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[13] Unsolved problems in group theory. The Kourovka notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/ãlglog/19tkt.pdf

[14] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985

[15] Yong Yang, “Regular orbits of nilpotent subgroups of solvable linear groups”, J. Algebra, 325:1 (2011), 56–69 | DOI | MR | Zbl