Structure of quasivariety lattices. III. Finitely partitionable bases
Algebra i logika, Tome 59 (2020) no. 3, pp. 323-333
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that each quasivariety containing a $\mathrm{B}$-class has continuum many subquasivarieties with finitely partitionable $\omega$-independent quasi-equational basis.
Keywords:
independent basis, quasi-identity, quasivariety, finitely partitionable basis.
@article{AL_2020_59_3_a3,
author = {A. V. Kravchenko and A. M. Nurakunov and M. V. Schwidefsky},
title = {Structure of quasivariety lattices. {III.} {Finitely} partitionable bases},
journal = {Algebra i logika},
pages = {323--333},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a3/}
}
TY - JOUR AU - A. V. Kravchenko AU - A. M. Nurakunov AU - M. V. Schwidefsky TI - Structure of quasivariety lattices. III. Finitely partitionable bases JO - Algebra i logika PY - 2020 SP - 323 EP - 333 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2020_59_3_a3/ LA - ru ID - AL_2020_59_3_a3 ER -
A. V. Kravchenko; A. M. Nurakunov; M. V. Schwidefsky. Structure of quasivariety lattices. III. Finitely partitionable bases. Algebra i logika, Tome 59 (2020) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a3/