Structure of quasivariety lattices. III. Finitely partitionable bases
Algebra i logika, Tome 59 (2020) no. 3, pp. 323-333

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that each quasivariety containing a $\mathrm{B}$-class has continuum many subquasivarieties with finitely partitionable $\omega$-independent quasi-equational basis.
Keywords: independent basis, quasi-identity, quasivariety, finitely partitionable basis.
@article{AL_2020_59_3_a3,
     author = {A. V. Kravchenko and A. M. Nurakunov and M. V. Schwidefsky},
     title = {Structure of quasivariety lattices. {III.} {Finitely} partitionable bases},
     journal = {Algebra i logika},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_3_a3/}
}
TY  - JOUR
AU  - A. V. Kravchenko
AU  - A. M. Nurakunov
AU  - M. V. Schwidefsky
TI  - Structure of quasivariety lattices. III. Finitely partitionable bases
JO  - Algebra i logika
PY  - 2020
SP  - 323
EP  - 333
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_3_a3/
LA  - ru
ID  - AL_2020_59_3_a3
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%A A. M. Nurakunov
%A M. V. Schwidefsky
%T Structure of quasivariety lattices. III. Finitely partitionable bases
%J Algebra i logika
%D 2020
%P 323-333
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_3_a3/
%G ru
%F AL_2020_59_3_a3
A. V. Kravchenko; A. M. Nurakunov; M. V. Schwidefsky. Structure of quasivariety lattices. III. Finitely partitionable bases. Algebra i logika, Tome 59 (2020) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/AL_2020_59_3_a3/