Semifield planes admitting the quaternion group $Q_8$
Algebra i logika, Tome 59 (2020) no. 1, pp. 101-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a well-known conjecture that the full automorphism group of a finite projective plane coordinatized by a semifield is solvable. For a semifield plane of order $p^N$ ($p>2$ is a prime, $4\vert p-1$) admitting an autotopism subgroup $H$ isomorphic to the quaternion group $Q_8$, we construct a matrix representation of $H$ and a regular set of the plane. All nonisomorphic semifield planes of orders $5^4$ and $13^4$ admitting $Q_8$ in the autotopism group are pointed out. It is proved that a semifield plane of order $p^4$, $4\vert p-1$, does not admit $SL(2,5)$ in the autotopism group.
Keywords: semifield plane, homology, regular set.
Mots-clés : autotopism group, quaternion group, Baire involution
@article{AL_2020_59_1_a5,
     author = {O. V. Kravtsova},
     title = {Semifield planes admitting the quaternion group $Q_8$},
     journal = {Algebra i logika},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/}
}
TY  - JOUR
AU  - O. V. Kravtsova
TI  - Semifield planes admitting the quaternion group $Q_8$
JO  - Algebra i logika
PY  - 2020
SP  - 101
EP  - 115
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/
LA  - ru
ID  - AL_2020_59_1_a5
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%T Semifield planes admitting the quaternion group $Q_8$
%J Algebra i logika
%D 2020
%P 101-115
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/
%G ru
%F AL_2020_59_1_a5
O. V. Kravtsova. Semifield planes admitting the quaternion group $Q_8$. Algebra i logika, Tome 59 (2020) no. 1, pp. 101-115. http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/

[1] O. V. Kravtsova, B. K. Durakov, “Polupolevye ploskosti nechetnogo poryadka, dopuskayuschie podgruppu avtotopizmov, izomorfnuyu $A_5$”, Sib. matem. zh., 59:2 (2018), 396–411 | Zbl

[2] D. R. Hughes, F. C. Piper, Projective planes, Grad. Texts Math., 6, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl

[3] N. L. Johnson, V. Jha, M. Biliotti, Handbook of finite translation planes, Pure Appl. Math., Boca Raton, 289, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[4] A. G. Kurosh, Lektsii po obschei algebre, Lan, Sankt-Peterburg, 2007

[5] Unsolved problems in group theory, The Kourovka notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/ãlglog/19tkt.pdf

[6] H. Huang, N. L. Johnson, “8 semifield planes of order $8^2$”, Discrete Math., 80:1 (1990), 69–79 | DOI | MR | Zbl

[7] N. D. Podufalov, B. K. Durakov, O. V. Kravtsova, E. B. Durakov, “O polupolevykh ploskostyakh poryadka $16^2$”, Sib. matem. zh., 37:3 (1996), 616–623 | Zbl

[8] O. V. Kravtsova, “On alternating subgroup $A_5$ in autotopism group of finite semifield plane”, Sib. elektron. matem. izv., 17 (2020), 47–50 http://semr.math.nsc.ru/v17/p47-50.pdf | Zbl

[9] V. M. Levchuk, S. V. Panov, P. K. Shtukkert, “Voprosy perechisleniya proektivnykh ploskostei i latinskikh pryamougolnikov”, Mekhanika i modelirovanie, SibGAU, Krasnoyarsk, 2012, 56–70

[10] G. E. Moorhouse, “$PSL(2,q)$ as a collineation group of projective planes of small orders”, Geom. Dedicata, 31:1 (1989), 63–68 | DOI | MR | Zbl

[11] C. Bartolone, T. G. Ostrom, “Translation planes of order $q^3$ which admit $SL(2,q)$”, J. Algebra, 99 (1986), 50–57 | DOI | MR | Zbl

[12] D. A. Foulser, N. L. Johnson, T. G. Ostrom, “A characterization of the Desarguesian planes of order $q^2$ by $SL(2,q)$”, Int. J. Math. Math. Sci., 6:3 (1983), 605–608 | DOI | MR | Zbl

[13] V. Jha, N. L. Johnson, “The translation planes of order 81 admitting $SL(2,5)$”, Note Mat., 24:2 (2005), 59–73 | MR | Zbl

[14] A. R. Prince, “A class of two-dimensional translationplanes admitting $SL(2,5)$”, Note Mat., 29, Suppl. 1 (2009), 223–230 | MR

[15] O. V. Kravtsova, “Polupolevye ploskosti nechetnogo poryadka, dopuskayuschie podgruppu avtotopizmov, izomorfnuyu $A_4$”, Izv. vuzov. Matem., 2016, no. 9, 10–25