Semifield planes admitting the quaternion group $Q_8$
Algebra i logika, Tome 59 (2020) no. 1, pp. 101-115

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a well-known conjecture that the full automorphism group of a finite projective plane coordinatized by a semifield is solvable. For a semifield plane of order $p^N$ ($p>2$ is a prime, $4\vert p-1$) admitting an autotopism subgroup $H$ isomorphic to the quaternion group $Q_8$, we construct a matrix representation of $H$ and a regular set of the plane. All nonisomorphic semifield planes of orders $5^4$ and $13^4$ admitting $Q_8$ in the autotopism group are pointed out. It is proved that a semifield plane of order $p^4$, $4\vert p-1$, does not admit $SL(2,5)$ in the autotopism group.
Keywords: semifield plane, homology, regular set.
Mots-clés : autotopism group, quaternion group, Baire involution
@article{AL_2020_59_1_a5,
     author = {O. V. Kravtsova},
     title = {Semifield planes admitting the quaternion group $Q_8$},
     journal = {Algebra i logika},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/}
}
TY  - JOUR
AU  - O. V. Kravtsova
TI  - Semifield planes admitting the quaternion group $Q_8$
JO  - Algebra i logika
PY  - 2020
SP  - 101
EP  - 115
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/
LA  - ru
ID  - AL_2020_59_1_a5
ER  - 
%0 Journal Article
%A O. V. Kravtsova
%T Semifield planes admitting the quaternion group $Q_8$
%J Algebra i logika
%D 2020
%P 101-115
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/
%G ru
%F AL_2020_59_1_a5
O. V. Kravtsova. Semifield planes admitting the quaternion group $Q_8$. Algebra i logika, Tome 59 (2020) no. 1, pp. 101-115. http://geodesic.mathdoc.fr/item/AL_2020_59_1_a5/