Novikov commutator algebras are special
Algebra i logika, Tome 58 (2019) no. 6, pp. 804-807.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2019_58_6_a6,
     author = {P. S. Kolesnikov and A. S. Panasenko},
     title = {Novikov commutator algebras are special},
     journal = {Algebra i logika},
     pages = {804--807},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a6/}
}
TY  - JOUR
AU  - P. S. Kolesnikov
AU  - A. S. Panasenko
TI  - Novikov commutator algebras are special
JO  - Algebra i logika
PY  - 2019
SP  - 804
EP  - 807
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_6_a6/
LA  - ru
ID  - AL_2019_58_6_a6
ER  - 
%0 Journal Article
%A P. S. Kolesnikov
%A A. S. Panasenko
%T Novikov commutator algebras are special
%J Algebra i logika
%D 2019
%P 804-807
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_6_a6/
%G ru
%F AL_2019_58_6_a6
P. S. Kolesnikov; A. S. Panasenko. Novikov commutator algebras are special. Algebra i logika, Tome 58 (2019) no. 6, pp. 804-807. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a6/

[1] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz pril., 13:4 (1979), 13–30 | MR | Zbl

[2] A. A. Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, DAN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl

[3] X. Xu, “Quadratic conformal superalgebras”, J. Algebra, 231:1 (2000), 1–38 | DOI | MR | Zbl

[4] X. Xu, “Gel'fand–Dorfman bialgebras”, Southeast Asian Bull. Math., 27:3 (2003), 561–574 | MR | Zbl

[5] P. S. Kolesnikov, B. Sartayev, A. Orazgaliev, “Gelfand–Dorfman algebras, derived identities, and the Manin product of operads”, J. Algebra, 539 (2019), 260–284 | DOI | MR | Zbl

[6] L. A. Bokut, Y. Chen, Z. Zhang, “Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras”, J. Algebra Appl., 16:1 (2017), 1750001, 22 pp. | DOI | MR | Zbl