@article{AL_2019_58_6_a6,
author = {P. S. Kolesnikov and A. S. Panasenko},
title = {Novikov commutator algebras are special},
journal = {Algebra i logika},
pages = {804--807},
year = {2019},
volume = {58},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a6/}
}
P. S. Kolesnikov; A. S. Panasenko. Novikov commutator algebras are special. Algebra i logika, Tome 58 (2019) no. 6, pp. 804-807. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a6/
[1] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz pril., 13:4 (1979), 13–30 | MR | Zbl
[2] A. A. Balinskii, S. P. Novikov, “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, DAN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl
[3] X. Xu, “Quadratic conformal superalgebras”, J. Algebra, 231:1 (2000), 1–38 | DOI | MR | Zbl
[4] X. Xu, “Gel'fand–Dorfman bialgebras”, Southeast Asian Bull. Math., 27:3 (2003), 561–574 | MR | Zbl
[5] P. S. Kolesnikov, B. Sartayev, A. Orazgaliev, “Gelfand–Dorfman algebras, derived identities, and the Manin product of operads”, J. Algebra, 539 (2019), 260–284 | DOI | MR | Zbl
[6] L. A. Bokut, Y. Chen, Z. Zhang, “Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras”, J. Algebra Appl., 16:1 (2017), 1750001, 22 pp. | DOI | MR | Zbl