Generalized direct products of groups and their application to the study of residuality of free constructions of groups
Algebra i logika, Tome 58 (2019) no. 6, pp. 720-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the construction of a generalized direct product associated with a graph of groups and prove two sufficient conditions for its existence. These results are applied to obtain some sufficient conditions for an $\mathrm{HNN}$-extension with central associated subgroups to be residually a $\mathcal{C}$-group where $\mathcal{C}$ is a root class of groups. In particular, it is proved that an $\mathrm{HNN}$-extension of a solvable group with central associated subgroups is residually solvable.
Keywords: generalized direct product, generalized free product, residual finiteness, residual $p$-finiteness, residual solvability, root-class residuality.
Mots-clés : $\mathrm{HNN}$-extension
@article{AL_2019_58_6_a3,
     author = {E. V. Sokolov and E. A. Tumanova},
     title = {Generalized direct products of groups and their application to the study of residuality of free constructions of groups},
     journal = {Algebra i logika},
     pages = {720--740},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a3/}
}
TY  - JOUR
AU  - E. V. Sokolov
AU  - E. A. Tumanova
TI  - Generalized direct products of groups and their application to the study of residuality of free constructions of groups
JO  - Algebra i logika
PY  - 2019
SP  - 720
EP  - 740
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_6_a3/
LA  - ru
ID  - AL_2019_58_6_a3
ER  - 
%0 Journal Article
%A E. V. Sokolov
%A E. A. Tumanova
%T Generalized direct products of groups and their application to the study of residuality of free constructions of groups
%J Algebra i logika
%D 2019
%P 720-740
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_6_a3/
%G ru
%F AL_2019_58_6_a3
E. V. Sokolov; E. A. Tumanova. Generalized direct products of groups and their application to the study of residuality of free constructions of groups. Algebra i logika, Tome 58 (2019) no. 6, pp. 720-740. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a3/

[1] H. Neumann, “Generalized free products with amalgamated subgroups”, Am. J. Math., 70:3 (1948), 590–625 | DOI | MR | Zbl

[2] B. H. Neumann, H. Neumann, “A remark on generalized free products”, J. Lond. Math. Soc., 25 (1950), 202–204 | DOI | MR | Zbl

[3] A. Karrass, D. Solitar, “The subgroups of a free product of two groups with an amalgamated subgroup”, Trans. Amer. Math. Soc., 150:1 (1970), 227–255 | DOI | MR | Zbl

[4] J.-P. Serre, Trees, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | Zbl

[5] R. B. J. T. Allenby, “Polygonal products of polycyclic by finite groups”, Bull. Aust. Math. Soc., 54:3 (1996), 369–372 | DOI | MR | Zbl

[6] D. Gorenstein, Finite Groups, 2nd ed., Chelsea Pub. Co., New York, 1980 | MR | Zbl

[7] G. Higman, “A finitely generated infinite simple group”, J. Lond. Math. Soc., 26 (1951), 61–64 | DOI | MR | Zbl

[8] H. Neumann, “Generalized free sums of cyclical groups”, Am. J. Math., 72:4 (1950), 671–685 | DOI | MR | Zbl

[9] H. Neumann, “On an amalgam of abelian groups”, J. Lond. Math. Soc., 26 (1951), 228–232 | DOI | MR | Zbl

[10] B. H. Neumann, “An essay on free products of groups with amalgamations”, Philos. Trans. Roy. Soc. London, Ser. A, 246 (1954), 503–554 | MR | Zbl

[11] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., III. Ser., 7 (1957), 29–62 | DOI | MR | Zbl

[12] E. V. Sokolov, “A characterization of root classes of groups”, Commun. Algebra, 43:2 (2015), 856–860 | DOI | MR | Zbl

[13] D. N. Azarov, D. Tedzho, “Ob approksimiruemosti svobodnogo proizvedeniya grupp s ob'edinennoi podgruppoi kornevym klassom grupp”, Nauch. tr. Ivan. gos. un-ta. Matem., 2002, no. 5, 6–10

[14] D. Tieudjo, “Root-class residuality of some free constructions”, JP J. Algebra Number Theory Appl., 18:2 (2010), 125–143 | MR | Zbl

[15] D. V. Goltsov, “O pochti approksimiruemosti kornevymi klassami obobschennykh svobodnykh proizvedenii i $\mathrm{HNN}$-rasshirenii grupp”, Chebyshevskii sb., 14:3 (2013), 34–41 | Zbl

[16] E. A. Tumanova, “Ob approksimiruemosti kornevymi klassami $\mathrm{HNN}$-rasshirenii grupp”, Model. i analiz inform. sistem, 21:4 (2014), 148–180

[17] D. V. Goltsov, “Approksimiruemost $\mathrm{HNN}$-rasshireniya s tsentralnymi svyazannymi podgruppami kornevym klassom grupp”, Matem. zametki, 97:5 (2015), 665–669 | DOI | MR | Zbl

[18] E. V. Sokolov, “Ob approksimiruemosti otnositelno sopryazhennosti nekotorykh svobodnykh konstruktsii grupp kornevymi klassami konechnykh grupp”, Matem. zametki, 97:5 (2015), 767–780 | DOI | MR | Zbl

[19] E. A. Tumanova, “Ob approksimiruemosti kornevymi klassami grupp obobschennykh svobodnykh proizvedenii s normalnym ob'edineniem”, Izv. vuzov. Matem., 2015, no. 10, 27–44 | MR | Zbl

[20] E. V. Sokolov, E. A. Tumanova, “Dostatochnye usloviya approksimiruemosti nekotorykh obobschennykh svobodnykh proizvedenii kornevymi klassami grupp”, Sib. matem. zh., 57:1 (2016), 171–185 | MR | Zbl

[21] E. V. Sokolov, E. A. Tumanova, “Approksimiruemost kornevymi klassami $\mathrm{HNN}$-rasshirenii s tsentralnymi tsiklicheskimi svyazannymi podgruppami”, Matem. zametki, 102:4 (2017), 597–612 | DOI | Zbl

[22] E. A. Tumanova, “Ob approksimiruemosti kornevymi klassami grupp Baumslaga–Solitera”, Sib. matem. zh., 58:3 (2017), 700–709 | MR | Zbl

[23] E. A. Tumanova, “Approksimiruemost kornevymi klassami grupp drevesnykh proizvedenii s ob'edinennymi retraktami”, Sib. matem. zh., 60:4 (2019), 891–906 | Zbl

[24] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980

[25] A. Karrass, D. Solitar, “Subgroups of $\mathrm{HNN}$ groups and groups with one defining relation”, Can. J. Math., 23 (1971), 627–643 | DOI | MR | Zbl

[26] D. I. Moldavanskii, “Finitnaya approksimiruemost nekotorykh $\mathrm{HNN}$-rasshirenii grupp”, Vestn. Ivan. gos. un-ta, 2002, no. 3, 123–133

[27] D. I. Moldavanskii, “Approksimiruemost konechnymi $p$-gruppami nekotorykh $\mathrm{HNN}$-rasshirenii grupp”, Vestn. Ivan. gos. un-ta, 2003, no. 3, 102–116

[28] E. Raptis, D. Varsos, “Residual properties of $\mathrm{HNN}$-extensions with base group an Abelian group”, J. Pure Appl. Algebra, 59:3 (1989), 285–290 | DOI | MR | Zbl