The $d$-rank of an $\alpha$-space does not exceed $1$
Algebra i logika, Tome 58 (2019) no. 6, pp. 706-713
It is proved that the $d$-rank of an arbitrary $\alpha$-space does not exceed $1$.
Mots-clés :
$\alpha$-space
Keywords: $d$-rank.
Keywords: $d$-rank.
@article{AL_2019_58_6_a1,
author = {Yu. L. Ershov},
title = {The $d$-rank of an $\alpha$-space does not exceed~$1$},
journal = {Algebra i logika},
pages = {706--713},
year = {2019},
volume = {58},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a1/}
}
Yu. L. Ershov. The $d$-rank of an $\alpha$-space does not exceed $1$. Algebra i logika, Tome 58 (2019) no. 6, pp. 706-713. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a1/
[1] Yu. L. Ershov, “Teoriya $A$-prostranstv”, Algebra i logika, 12:4 (1973), 369–416 | MR
[2] Yu. L. Ershov, “On $d$-spaces”, Theor. Comput. Sci., 224:1/2 (1999), 59–72 | DOI | MR | Zbl
[3] Yu. L. Ershov, “O $d$-range topologicheskogo prostranstva”, Algebra i logika, 56:2 (2017), 150–163 | MR | Zbl
[4] Yu. L. Ershov, “Theory of domains and nearby”, Formal methods in programming and their applications, Int. conf. formal methods progr. their appl. (Academgorodok, Novosibirsk, Russia, June 28–July 2, 1993), Lec. Not. Comp. Sci., 735, eds. D. Bjørner, M. Broy, Springer-Verlag, Berlin, 1993, 1–7 | DOI | MR