The $d$-rank of an $\alpha$-space does not exceed~$1$
Algebra i logika, Tome 58 (2019) no. 6, pp. 706-713.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the $d$-rank of an arbitrary $\alpha$-space does not exceed $1$.
Mots-clés : $\alpha$-space
Keywords: $d$-rank.
@article{AL_2019_58_6_a1,
     author = {Yu. L. Ershov},
     title = {The $d$-rank of an $\alpha$-space does not exceed~$1$},
     journal = {Algebra i logika},
     pages = {706--713},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_6_a1/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - The $d$-rank of an $\alpha$-space does not exceed~$1$
JO  - Algebra i logika
PY  - 2019
SP  - 706
EP  - 713
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_6_a1/
LA  - ru
ID  - AL_2019_58_6_a1
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T The $d$-rank of an $\alpha$-space does not exceed~$1$
%J Algebra i logika
%D 2019
%P 706-713
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_6_a1/
%G ru
%F AL_2019_58_6_a1
Yu. L. Ershov. The $d$-rank of an $\alpha$-space does not exceed~$1$. Algebra i logika, Tome 58 (2019) no. 6, pp. 706-713. http://geodesic.mathdoc.fr/item/AL_2019_58_6_a1/

[1] Yu. L. Ershov, “Teoriya $A$-prostranstv”, Algebra i logika, 12:4 (1973), 369–416 | MR

[2] Yu. L. Ershov, “On $d$-spaces”, Theor. Comput. Sci., 224:1/2 (1999), 59–72 | DOI | MR | Zbl

[3] Yu. L. Ershov, “O $d$-range topologicheskogo prostranstva”, Algebra i logika, 56:2 (2017), 150–163 | MR | Zbl

[4] Yu. L. Ershov, “Theory of domains and nearby”, Formal methods in programming and their applications, Int. conf. formal methods progr. their appl. (Academgorodok, Novosibirsk, Russia, June 28–July 2, 1993), Lec. Not. Comp. Sci., 735, eds. D. Bjørner, M. Broy, Springer-Verlag, Berlin, 1993, 1–7 | DOI | MR