On realization of index sets in $\Pi_1^0$-classes
Algebra i logika, Tome 58 (2019) no. 5, pp. 659-663.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2019_58_5_a5,
     author = {R. Downey and A. G. Melnikov},
     title = {On realization of index sets in $\Pi_1^0$-classes},
     journal = {Algebra i logika},
     pages = {659--663},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a5/}
}
TY  - JOUR
AU  - R. Downey
AU  - A. G. Melnikov
TI  - On realization of index sets in $\Pi_1^0$-classes
JO  - Algebra i logika
PY  - 2019
SP  - 659
EP  - 663
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_5_a5/
LA  - ru
ID  - AL_2019_58_5_a5
ER  - 
%0 Journal Article
%A R. Downey
%A A. G. Melnikov
%T On realization of index sets in $\Pi_1^0$-classes
%J Algebra i logika
%D 2019
%P 659-663
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_5_a5/
%G ru
%F AL_2019_58_5_a5
R. Downey; A. G. Melnikov. On realization of index sets in $\Pi_1^0$-classes. Algebra i logika, Tome 58 (2019) no. 5, pp. 659-663. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a5/

[1] D. Cenzer, C. G. Jockusch, Jr., “$\Pi_1^0$ classes– structure and applications”, Computability theory and its applications. Current trends and open problems, Proc. 1999 AMS-IMS-SIAM joint summer research conf. (Boulder, CO, USA, June 13–17, 1999), Contemp. Math., 257, eds. P. A. Cholak et al., Am. Math. Soc., Providence, RI, 2000, 39–59 | DOI | MR | Zbl

[2] Р. И. Соар, Вычислимо перечислимые множества и степени. Изучение вычислимых функций и вычислимо перечислимых множеств, Казанское матем. об-во, Казань, 2000 | DOI | MR

[3] B. Csima, R. Downey, K. M. Ng, On the c. e. degrees realizable in $\Pi^0_1$ classes, in preparation

[4] C. E. M. Yates, “On the degrees of index sets”, Trans. Am. Math. Soc., 121 (1966), 309–328 | DOI | MR | Zbl

[5] C. E. M. Yates, “On the degrees of index sets. II”, Trans. Am. Math. Soc, 135 (1969), 249–266 | DOI | MR | Zbl

[6] R. Downey, C. Jockusch, M. Stob, “Array nonrecursive sets, multiple permitting arguments”, Recursion theory week, Proc. conf. (Oberwolfach/FRG 1989), Lect. Notes Math., 1432, eds. K. Ambos-Spies et al., Springer-Verlag, Berlin etc., 1990, 141–173 | DOI | MR