Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2019_58_5_a5, author = {R. Downey and A. G. Melnikov}, title = {On realization of index sets in $\Pi_1^0$-classes}, journal = {Algebra i logika}, pages = {659--663}, publisher = {mathdoc}, volume = {58}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a5/} }
R. Downey; A. G. Melnikov. On realization of index sets in $\Pi_1^0$-classes. Algebra i logika, Tome 58 (2019) no. 5, pp. 659-663. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a5/
[1] D. Cenzer, C. G. Jockusch, Jr., “$\Pi_1^0$ classes– structure and applications”, Computability theory and its applications. Current trends and open problems, Proc. 1999 AMS-IMS-SIAM joint summer research conf. (Boulder, CO, USA, June 13–17, 1999), Contemp. Math., 257, eds. P. A. Cholak et al., Am. Math. Soc., Providence, RI, 2000, 39–59 | DOI | MR | Zbl
[2] Р. И. Соар, Вычислимо перечислимые множества и степени. Изучение вычислимых функций и вычислимо перечислимых множеств, Казанское матем. об-во, Казань, 2000 | DOI | MR
[3] B. Csima, R. Downey, K. M. Ng, On the c. e. degrees realizable in $\Pi^0_1$ classes, in preparation
[4] C. E. M. Yates, “On the degrees of index sets”, Trans. Am. Math. Soc., 121 (1966), 309–328 | DOI | MR | Zbl
[5] C. E. M. Yates, “On the degrees of index sets. II”, Trans. Am. Math. Soc, 135 (1969), 249–266 | DOI | MR | Zbl
[6] R. Downey, C. Jockusch, M. Stob, “Array nonrecursive sets, multiple permitting arguments”, Recursion theory week, Proc. conf. (Oberwolfach/FRG 1989), Lect. Notes Math., 1432, eds. K. Ambos-Spies et al., Springer-Verlag, Berlin etc., 1990, 141–173 | DOI | MR