Primitive normality and primitive connectedness of a class of
Algebra i logika, Tome 58 (2019) no. 5, pp. 650-658
We study monoids over which a class of divisible $S$-polygons is primitive normal or primitive connected. It is shown that for an arbitrary monoid $S$, the class of divisible polygons is primitive normal iff $S$ is a linearly ordered monoid, and that it is primitive connected iff $S$ is a group.
Keywords:
theory, primitive normal theory, primitive connected theory
Mots-clés : polygon, divisible polygon.
Mots-clés : polygon, divisible polygon.
@article{AL_2019_58_5_a4,
author = {A. A. Stepanova and A. I. Krasitskaya},
title = {Primitive normality and primitive connectedness of a class of},
journal = {Algebra i logika},
pages = {650--658},
year = {2019},
volume = {58},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a4/}
}
A. A. Stepanova; A. I. Krasitskaya. Primitive normality and primitive connectedness of a class of. Algebra i logika, Tome 58 (2019) no. 5, pp. 650-658. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a4/
[1] A. A. Stepanova, “Primitivno svyaznye i additivnye teorii poligonov”, Algebra i logika, 45:3 (2006), 300–313 | MR | Zbl
[2] A. A. Stepanova, “Poligony s primitivno normalnymi i additivnymi teoriyami”, Algebra i logika, 47:4 (2008), 491–508 | MR | Zbl
[3] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977
[4] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR
[5] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, With applications to wreath products and graphs. A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl