Primitive normality and primitive connectedness of a class of
Algebra i logika, Tome 58 (2019) no. 5, pp. 650-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study monoids over which a class of divisible $S$-polygons is primitive normal or primitive connected. It is shown that for an arbitrary monoid $S$, the class of divisible polygons is primitive normal iff $S$ is a linearly ordered monoid, and that it is primitive connected iff $S$ is a group.
Keywords: theory, primitive normal theory, primitive connected theory
Mots-clés : polygon, divisible polygon.
@article{AL_2019_58_5_a4,
     author = {A. A. Stepanova and A. I. Krasitskaya},
     title = {Primitive normality and primitive connectedness of a class of},
     journal = {Algebra i logika},
     pages = {650--658},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a4/}
}
TY  - JOUR
AU  - A. A. Stepanova
AU  - A. I. Krasitskaya
TI  - Primitive normality and primitive connectedness of a class of
JO  - Algebra i logika
PY  - 2019
SP  - 650
EP  - 658
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_5_a4/
LA  - ru
ID  - AL_2019_58_5_a4
ER  - 
%0 Journal Article
%A A. A. Stepanova
%A A. I. Krasitskaya
%T Primitive normality and primitive connectedness of a class of
%J Algebra i logika
%D 2019
%P 650-658
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_5_a4/
%G ru
%F AL_2019_58_5_a4
A. A. Stepanova; A. I. Krasitskaya. Primitive normality and primitive connectedness of a class of. Algebra i logika, Tome 58 (2019) no. 5, pp. 650-658. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a4/

[1] A. A. Stepanova, “Primitivno svyaznye i additivnye teorii poligonov”, Algebra i logika, 45:3 (2006), 300–313 | MR | Zbl

[2] A. A. Stepanova, “Poligony s primitivno normalnymi i additivnymi teoriyami”, Algebra i logika, 47:4 (2008), 491–508 | MR | Zbl

[3] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977

[4] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR

[5] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, With applications to wreath products and graphs. A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl