Simple asymmetric doubles, their automorphisms and derivations
Algebra i logika, Tome 58 (2019) no. 5, pp. 627-649.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple right-alternative, but not alternative, superalgebra whose even part coincides with an algebra of second-order matrices is called an asymmetric double. It is known that such superalgebras are eight-dimensional. We give a solution to the isomorphism problem for asymmetric doubles, point out their automorphism groups and derivation superalgebras.
Keywords: asymmetric double, superalgebra.
Mots-clés : isomorphism, automorphism group
@article{AL_2019_58_5_a3,
     author = {S. V. Pchelintsev and O. V. Shashkov},
     title = {Simple asymmetric doubles, their automorphisms and derivations},
     journal = {Algebra i logika},
     pages = {627--649},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a3/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - O. V. Shashkov
TI  - Simple asymmetric doubles, their automorphisms and derivations
JO  - Algebra i logika
PY  - 2019
SP  - 627
EP  - 649
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_5_a3/
LA  - ru
ID  - AL_2019_58_5_a3
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A O. V. Shashkov
%T Simple asymmetric doubles, their automorphisms and derivations
%J Algebra i logika
%D 2019
%P 627-649
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_5_a3/
%G ru
%F AL_2019_58_5_a3
S. V. Pchelintsev; O. V. Shashkov. Simple asymmetric doubles, their automorphisms and derivations. Algebra i logika, Tome 58 (2019) no. 5, pp. 627-649. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a3/

[1] N. Dzhekobson, Algebry Li, Mir, M., 1964

[2] R. D. Schafer, An introduction to nonassociative algebras, Pure Appl. Math., 22, Academic Press, New York–London, 1966 | MR | Zbl

[3] J. Tits, “Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I: Construction”, Nederl. Akad. Wet., Proc., Ser. A, 69 (1966), 223–237 | MR | Zbl

[4] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye pravoalternativnye superalgebry abeleva tipa kharakteristiki nul”, Izv. RAN. Cer. matem., 79:3 (2015), 131–158 | DOI | MR | Zbl

[5] J. P. da Silva, L. S. I. Murakami, I. Shestakov, “On right alternative superalgebras”, Commun. Algebra, 44:1 (2016), 240–252 | DOI | MR | Zbl

[6] S. V. Pchelintsev, O. V. Shashkov, “Prostye unitalnye pravoalternativnye superalgebry nad algebroi matrits poryadka 2”, Algebra i logika, 58:1 (2019), 108–131 | MR | Zbl

[7] S. V. Pchelintsev, O. V. Shashkov, “Prostye asimmetrichnye dubli, ikh avtomorfizmy i differentsirovaniya”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (19–22 noyabrya 2018, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2018, 165

[8] A. A. Albert, “On right alternative algebras”, Ann. Math. (2), 50 (1949), 318–328 | DOI | MR | Zbl

[9] A. I. Maltsev, Osnovy lineinoi algebry, Lan, Sankt-Peterburg, 2009 | MR

[10] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972

[11] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2010 | MR