$\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$
Algebra i logika, Tome 58 (2019) no. 5, pp. 609-626
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the ordinal $\omega_1$ cannot be embedded into a preordering $\Sigma$-definable with parameters in the hereditarily finite superstructure over the real numbers. As a corollary, we obtain the descriptions of ordinals $\Sigma$-presentable over ${\mathbb{HF}(\mathbb{R})}$ and of Gödel constructive sets of the form $L_\alpha$. It is also shown that there are no $\Sigma$-presentations of structures of $T$-, $m$-, $1$- and $tt$-degrees.
Keywords:
$\Sigma$-definable preordering, ordinal, hereditarily finite superstructure, real numbers.
@article{AL_2019_58_5_a2,
author = {A. S. Morozov},
title = {$\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$},
journal = {Algebra i logika},
pages = {609--626},
publisher = {mathdoc},
volume = {58},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a2/}
}
A. S. Morozov. $\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$. Algebra i logika, Tome 58 (2019) no. 5, pp. 609-626. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a2/