$\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$
Algebra i logika, Tome 58 (2019) no. 5, pp. 609-626

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the ordinal $\omega_1$ cannot be embedded into a preordering $\Sigma$-definable with parameters in the hereditarily finite superstructure over the real numbers. As a corollary, we obtain the descriptions of ordinals $\Sigma$-presentable over ${\mathbb{HF}(\mathbb{R})}$ and of Gödel constructive sets of the form $L_\alpha$. It is also shown that there are no $\Sigma$-presentations of structures of $T$-, $m$-, $1$- and $tt$-degrees.
Keywords: $\Sigma$-definable preordering, ordinal, hereditarily finite superstructure, real numbers.
@article{AL_2019_58_5_a2,
     author = {A. S. Morozov},
     title = {$\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$},
     journal = {Algebra i logika},
     pages = {609--626},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_5_a2/}
}
TY  - JOUR
AU  - A. S. Morozov
TI  - $\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$
JO  - Algebra i logika
PY  - 2019
SP  - 609
EP  - 626
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_5_a2/
LA  - ru
ID  - AL_2019_58_5_a2
ER  - 
%0 Journal Article
%A A. S. Morozov
%T $\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$
%J Algebra i logika
%D 2019
%P 609-626
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_5_a2/
%G ru
%F AL_2019_58_5_a2
A. S. Morozov. $\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$. Algebra i logika, Tome 58 (2019) no. 5, pp. 609-626. http://geodesic.mathdoc.fr/item/AL_2019_58_5_a2/