Khutoretskii's theorem for generalized computable families
Algebra i logika, Tome 58 (2019) no. 4, pp. 528-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give sufficient conditions for generalized computable numberings to satisfy the statement of Khutoretskii's theorem. This implies limitedness of universal $\Sigma^0_\alpha$-computable numberings for $2\leqslant\alpha \omega^{CK}_1$.
Keywords: generalized computable family, generalized computable numbering, Khutoretskii's theorem.
@article{AL_2019_58_4_a7,
     author = {M. Kh. Faizrakhmanov},
     title = {Khutoretskii's theorem for generalized computable families},
     journal = {Algebra i logika},
     pages = {528--541},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a7/}
}
TY  - JOUR
AU  - M. Kh. Faizrakhmanov
TI  - Khutoretskii's theorem for generalized computable families
JO  - Algebra i logika
PY  - 2019
SP  - 528
EP  - 541
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a7/
LA  - ru
ID  - AL_2019_58_4_a7
ER  - 
%0 Journal Article
%A M. Kh. Faizrakhmanov
%T Khutoretskii's theorem for generalized computable families
%J Algebra i logika
%D 2019
%P 528-541
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a7/
%G ru
%F AL_2019_58_4_a7
M. Kh. Faizrakhmanov. Khutoretskii's theorem for generalized computable families. Algebra i logika, Tome 58 (2019) no. 4, pp. 528-541. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a7/

[1] A. V. Khutoretskii, “O moschnosti verkhnei polureshetki vychislimykh numeratsii”, Algebra i logika, 10:5 (1971), 561–569 | MR

[2] S. S. Goncharov, A. Sorbi, “Obobschenno-vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[3] S. A. Badaev, S. S. Goncharov, “Obobschenno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR

[4] S. A. Badaev, S. Yu. Podzorov, “Minimalnye nakrytiya v polureshetkakh Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Sib. matem. zh., 43:4 (2002), 769–778 | MR | Zbl

[5] S. Yu. Podzorov, “O predelnosti naibolshego elementa polureshetki Rodzhersa”, Matem. tr., 7:2 (2004), 98–108 | MR | Zbl

[6] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, eds. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | DOI | MR

[7] M. Kh. Faizrakhmanov, “O polureshetkakh Rodzhersa obobschenno vychislimykh numeratsii”, Sib. matem. zh., 58:6 (2017), 1418–1427 | MR

[8] M. Kh. Faizrakhmanov, “Universalnye obobschenno vychislimye numeratsii i giperimmunnost”, Algebra i logika, 56:4 (2017), 506–521 | MR | Zbl

[9] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[10] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Log., Omega Series, Springer-Verlag, Berlin etc., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni. Izuchenie vychislimykh funktsii i vychislimo perechislimykh mnozhestv, Kazanskoe matem. ob-vo, Kazan, 2000 | DOI | MR

[11] P. Odifreddi, Classical recursion theory. The theory of functions and sets of natural numbers, Stud. Log. Found. Math., 125, North-Holland, Amsterdam etc., 1989 | MR | Zbl

[12] C. G. Jockusch, Jr., “Degrees in which the recursive sets are uniformly recursive”, Can. J. Math., 24:6 (1972), 1092–1099 | DOI | MR | Zbl