Asymptotic rank theorems
Algebra i logika, Tome 58 (2019) no. 4, pp. 500-511
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a numerical $k\times\infty$-matrix such that minors $A_I$ of order $k$ tend to zero if numbers of all columns forming these minors tend to infinity. It is shown that there exits a nontrivial linear combination of rows in $A$ which is a sequence tending to zero.
Keywords:
$k\times\infty$-matrix, asymptotic rank.
@article{AL_2019_58_4_a5,
author = {K. V. Storozhuk},
title = {Asymptotic rank theorems},
journal = {Algebra i logika},
pages = {500--511},
publisher = {mathdoc},
volume = {58},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a5/}
}
K. V. Storozhuk. Asymptotic rank theorems. Algebra i logika, Tome 58 (2019) no. 4, pp. 500-511. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a5/