Asymptotic rank theorems
Algebra i logika, Tome 58 (2019) no. 4, pp. 500-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a numerical $k\times\infty$-matrix such that minors $A_I$ of order $k$ tend to zero if numbers of all columns forming these minors tend to infinity. It is shown that there exits a nontrivial linear combination of rows in $A$ which is a sequence tending to zero.
Keywords: $k\times\infty$-matrix, asymptotic rank.
@article{AL_2019_58_4_a5,
     author = {K. V. Storozhuk},
     title = {Asymptotic rank theorems},
     journal = {Algebra i logika},
     pages = {500--511},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a5/}
}
TY  - JOUR
AU  - K. V. Storozhuk
TI  - Asymptotic rank theorems
JO  - Algebra i logika
PY  - 2019
SP  - 500
EP  - 511
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a5/
LA  - ru
ID  - AL_2019_58_4_a5
ER  - 
%0 Journal Article
%A K. V. Storozhuk
%T Asymptotic rank theorems
%J Algebra i logika
%D 2019
%P 500-511
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a5/
%G ru
%F AL_2019_58_4_a5
K. V. Storozhuk. Asymptotic rank theorems. Algebra i logika, Tome 58 (2019) no. 4, pp. 500-511. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a5/