Universal equivalence of linear groups over local commutative
Algebra i logika, Tome 58 (2019) no. 4, pp. 467-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the universal equivalence of general or special linear groups of orders greater than $2$ over local commutative rings with $1/2$ is equivalent to the coincidence of orders of groups and universal equivalence of respective rings.
Keywords: universal equivalence, general linear groups, special linear groups, local rings.
@article{AL_2019_58_4_a2,
     author = {G. A. Kaleeva},
     title = {Universal equivalence of linear groups over local commutative},
     journal = {Algebra i logika},
     pages = {467--478},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a2/}
}
TY  - JOUR
AU  - G. A. Kaleeva
TI  - Universal equivalence of linear groups over local commutative
JO  - Algebra i logika
PY  - 2019
SP  - 467
EP  - 478
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a2/
LA  - ru
ID  - AL_2019_58_4_a2
ER  - 
%0 Journal Article
%A G. A. Kaleeva
%T Universal equivalence of linear groups over local commutative
%J Algebra i logika
%D 2019
%P 467-478
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a2/
%G ru
%F AL_2019_58_4_a2
G. A. Kaleeva. Universal equivalence of linear groups over local commutative. Algebra i logika, Tome 58 (2019) no. 4, pp. 467-478. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a2/

[1] E. I. Bunina, G. A. Kaleeva, “Universalnaya ekvivalentnost obschikh i spetsialnykh lineinykh grupp nad polyami”, Fundament. i prikl. matem., 21:3 (2016), 73–106

[2] A. I. Maltsev, “Ob elementarnykh svoistvakh lineinykh grupp”, Nekotorye problemy matematiki i mekhaniki, Sib. otd-e AN SSSR, Novosibirsk, 1961, 110–132

[3] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972

[4] I. Z. Golubchik, A. V. Mikhalev, “Izomorfizmy obschei lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Ser. 1: Matem., mekh., 1983, no. 3, 61–72 | Zbl

[5] Zh. Pomfre, B. Makdonald, “Avtomorfizmy gruppy ${\mathrm{GL} }_n$ nad lokalnym koltsom”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 176–187