An isotopically invariant property of automorphic Moufang loops
Algebra i logika, Tome 58 (2019) no. 4, pp. 458-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a maximal variety $\mathfrak W$ of automorphic Moufang loops such that for every loop $A$ in the variety $\mathfrak W$, any loop isotopic to $A$ also lies in $\mathfrak W$.
Keywords: automorphic Moufang loop, variety, isotope.
@article{AL_2019_58_4_a1,
     author = {A. N. Grishkov and M. N. Rasskazova and L. L. Sabinina},
     title = {An isotopically invariant property of automorphic {Moufang} loops},
     journal = {Algebra i logika},
     pages = {458--466},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a1/}
}
TY  - JOUR
AU  - A. N. Grishkov
AU  - M. N. Rasskazova
AU  - L. L. Sabinina
TI  - An isotopically invariant property of automorphic Moufang loops
JO  - Algebra i logika
PY  - 2019
SP  - 458
EP  - 466
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_4_a1/
LA  - ru
ID  - AL_2019_58_4_a1
ER  - 
%0 Journal Article
%A A. N. Grishkov
%A M. N. Rasskazova
%A L. L. Sabinina
%T An isotopically invariant property of automorphic Moufang loops
%J Algebra i logika
%D 2019
%P 458-466
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_4_a1/
%G ru
%F AL_2019_58_4_a1
A. N. Grishkov; M. N. Rasskazova; L. L. Sabinina. An isotopically invariant property of automorphic Moufang loops. Algebra i logika, Tome 58 (2019) no. 4, pp. 458-466. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a1/

[1] M. Kinyon, I. M. Wanless, “Loops with exponent three in all isotopes”, Int. J. Algebra Comput., 25:7 (2015), 1159–1177 | DOI | MR | Zbl

[2] M. K. Kinyon, K. Kunen, J. D. Phillips, “Every diassociative $A$-loop is Moufang”, Proc. Am. Math. Soc., 130:3 (2002), 619–624 | DOI | MR | Zbl

[3] E. Falconer, “Isotopy invariants in quasigroups”, Trans. Am. Math. Soc., 151 (1970), 511–526 | DOI | MR | Zbl

[4] R. Bruck, A survey of binary systems, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1966 | MR | Zbl

[5] A. Grishkov, P. Plaumann, L. Sabinina, “Structure of free automorphic loops”, Proc. Am. Math. Soc., 140:7 (2012), 2209–2214 | DOI | MR | Zbl