An isotopically invariant property of automorphic Moufang loops
Algebra i logika, Tome 58 (2019) no. 4, pp. 458-466
We describe a maximal variety $\mathfrak W$ of automorphic Moufang loops such that for every loop $A$ in the variety $\mathfrak W$, any loop isotopic to $A$ also lies in $\mathfrak W$.
Keywords:
automorphic Moufang loop, variety, isotope.
@article{AL_2019_58_4_a1,
author = {A. N. Grishkov and M. N. Rasskazova and L. L. Sabinina},
title = {An isotopically invariant property of automorphic {Moufang} loops},
journal = {Algebra i logika},
pages = {458--466},
year = {2019},
volume = {58},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_4_a1/}
}
A. N. Grishkov; M. N. Rasskazova; L. L. Sabinina. An isotopically invariant property of automorphic Moufang loops. Algebra i logika, Tome 58 (2019) no. 4, pp. 458-466. http://geodesic.mathdoc.fr/item/AL_2019_58_4_a1/
[1] M. Kinyon, I. M. Wanless, “Loops with exponent three in all isotopes”, Int. J. Algebra Comput., 25:7 (2015), 1159–1177 | DOI | MR | Zbl
[2] M. K. Kinyon, K. Kunen, J. D. Phillips, “Every diassociative $A$-loop is Moufang”, Proc. Am. Math. Soc., 130:3 (2002), 619–624 | DOI | MR | Zbl
[3] E. Falconer, “Isotopy invariants in quasigroups”, Trans. Am. Math. Soc., 151 (1970), 511–526 | DOI | MR | Zbl
[4] R. Bruck, A survey of binary systems, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1966 | MR | Zbl
[5] A. Grishkov, P. Plaumann, L. Sabinina, “Structure of free automorphic loops”, Proc. Am. Math. Soc., 140:7 (2012), 2209–2214 | DOI | MR | Zbl