Universal theories and centralizer dimensions of groups
Algebra i logika, Tome 58 (2019) no. 3, pp. 397-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact value of the centralizer dimension is found for a free polynilpotent group and for a free group in a variety of metabelian groups of nilpotency class at most $c$. Relations between $\exists$- and $\Phi$-theories of groups are specified, in which case the concept of centralizer dimension plays an important role.
Keywords: polynilpotent group, free group, variety of metabelian groups, centralizer dimension, $\exists$-theories of groups, $\Phi$-theories of groups.
@article{AL_2019_58_3_a7,
     author = {E. I. Timoshenko},
     title = {Universal theories and centralizer dimensions of groups},
     journal = {Algebra i logika},
     pages = {397--416},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_3_a7/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Universal theories and centralizer dimensions of groups
JO  - Algebra i logika
PY  - 2019
SP  - 397
EP  - 416
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_3_a7/
LA  - ru
ID  - AL_2019_58_3_a7
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Universal theories and centralizer dimensions of groups
%J Algebra i logika
%D 2019
%P 397-416
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_3_a7/
%G ru
%F AL_2019_58_3_a7
E. I. Timoshenko. Universal theories and centralizer dimensions of groups. Algebra i logika, Tome 58 (2019) no. 3, pp. 397-416. http://geodesic.mathdoc.fr/item/AL_2019_58_3_a7/

[1] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl

[2] P. Hall, “Nilpotent groups”, Notes of lectures given at the Canadian Mathematical Congress, Summer seminar (Univ. Alberta, Edmonton, 12–30 August, 1957), Queen Mary College Math. Notes, Queen Mary College (Univ. London), London, 1969, 12–30 | MR

[3] L. Auslander, “On a problem of Philip Hall”, Ann. Math. (2), 86 (1967), 112–116 | DOI | MR | Zbl

[4] V. N. Remeslennikov, “Predstavlenie konechno porozhdennykh metabelevykh grupp matritsami”, Algebra i logika, 8:1 (1969), 72–75

[5] B. A. F. Wehrfritz, “Faithful representations of finitely generated metabelian groups”, Can. J. Math., 27 (1975), 1355–1360 | DOI | MR | Zbl

[6] B. A. F. Wehrfritz, “On finitely generated soluble linear groups”, Math. Z., 170 (1980), 155–167 | DOI | MR | Zbl

[7] J. C. Lennox, J. E. Roseblade, “Centrality in finitely generated soluble groups”, J. Algebra, 16 (1970), 399–435 | DOI | MR | Zbl

[8] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Centraliser dimension and universal classes of groups”, Sib. elektron. matem. izv., 3 (2006), 197–215 http://semr.math.nsc.ru/v3/p197-215.pdf | MR | Zbl

[9] A. A. Mischenko, A. V. Treier, “Grafy kommutativnosti dlya chastichno kommutativnykh dvustupenno nilpotentnykh $\mathbb Q$-grupp”, Sib. elektron. matem. izv., 4 (2007), 460–481 http://semr.math.nsc.ru/v4/p460-481.pdf

[10] E. I. Timoshenko, “Tsentralizatornye razmernosti i universalnye teorii chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 56:2 (2017), 226–255 | MR | Zbl

[11] E. I. Timoshenko, “Tsentralizatornye razmernosti chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 57:1 (2018), 102–117 | MR | Zbl

[12] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i opredelyayuschikh sootnoshenii, Nauka, M., 1974

[13] A. L. Shmelkin, “Svobodnye polinilpotentnye gruppy”, Izv. AN SSSR. Cer. matem., 28:1 (1964), 91–122 | Zbl

[14] K. W. Gruenberg, “Residual properties of infinite groups”, Proc. Lond. Math. Soc., III. Ser., 7:25 (1957), 29–62 | DOI | MR | Zbl

[15] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969

[16] E. I. Timoshenko, “Ob universalno ekvivalentnykh razreshimykh gruppakh”, Algebra i logika, 39:2 (2000), 227—240 | MR | Zbl

[17] Ch. K. Gupta, E. I. Timoshenko, “Chastichno kommutativnye metabelevy gruppy: tsentralizatory i elementarnaya ekvivalentnost”, Algebra i logika, 48:3 (2009), 309–341 | MR | Zbl