The interpolation problem in finite-layered pre-Heyting logics
Algebra i logika, Tome 58 (2019) no. 2, pp. 210-228
Voir la notice de l'article provenant de la source Math-Net.Ru
The interpolation problem over Johansson's minimal logic $\mathrm{ J}$ is considered. We introduce a series of Johansson algebras, which will be used to prove a number of necessary conditions for a $\mathrm{ J}$-logic to possess Craig's interpolation property $\mathrm{ (CIP)}$. As a consequence, we deduce that there exist only finitely many finite-layered pre-Heyting algebras with $\mathrm{ CIP}$.
Keywords:
finite-layered pre-Heyting logic, Craig's interpolation property
Mots-clés : Johansson algebra.
Mots-clés : Johansson algebra.
@article{AL_2019_58_2_a4,
author = {L. L. Maksimova and V. F. Yun},
title = {The interpolation problem in finite-layered {pre-Heyting} logics},
journal = {Algebra i logika},
pages = {210--228},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/}
}
L. L. Maksimova; V. F. Yun. The interpolation problem in finite-layered pre-Heyting logics. Algebra i logika, Tome 58 (2019) no. 2, pp. 210-228. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/