The interpolation problem in finite-layered pre-Heyting logics
Algebra i logika, Tome 58 (2019) no. 2, pp. 210-228

Voir la notice de l'article provenant de la source Math-Net.Ru

The interpolation problem over Johansson's minimal logic $\mathrm{ J}$ is considered. We introduce a series of Johansson algebras, which will be used to prove a number of necessary conditions for a $\mathrm{ J}$-logic to possess Craig's interpolation property $\mathrm{ (CIP)}$. As a consequence, we deduce that there exist only finitely many finite-layered pre-Heyting algebras with $\mathrm{ CIP}$.
Keywords: finite-layered pre-Heyting logic, Craig's interpolation property
Mots-clés : Johansson algebra.
@article{AL_2019_58_2_a4,
     author = {L. L. Maksimova and V. F. Yun},
     title = {The interpolation problem in finite-layered {pre-Heyting} logics},
     journal = {Algebra i logika},
     pages = {210--228},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - The interpolation problem in finite-layered pre-Heyting logics
JO  - Algebra i logika
PY  - 2019
SP  - 210
EP  - 228
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/
LA  - ru
ID  - AL_2019_58_2_a4
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T The interpolation problem in finite-layered pre-Heyting logics
%J Algebra i logika
%D 2019
%P 210-228
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/
%G ru
%F AL_2019_58_2_a4
L. L. Maksimova; V. F. Yun. The interpolation problem in finite-layered pre-Heyting logics. Algebra i logika, Tome 58 (2019) no. 2, pp. 210-228. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/