The interpolation problem in finite-layered pre-Heyting logics
Algebra i logika, Tome 58 (2019) no. 2, pp. 210-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

The interpolation problem over Johansson's minimal logic $\mathrm{ J}$ is considered. We introduce a series of Johansson algebras, which will be used to prove a number of necessary conditions for a $\mathrm{ J}$-logic to possess Craig's interpolation property $\mathrm{ (CIP)}$. As a consequence, we deduce that there exist only finitely many finite-layered pre-Heyting algebras with $\mathrm{ CIP}$.
Keywords: finite-layered pre-Heyting logic, Craig's interpolation property, Johansson algebra.
@article{AL_2019_58_2_a4,
     author = {L. L. Maksimova and V. F. Yun},
     title = {The interpolation problem in finite-layered {pre-Heyting} logics},
     journal = {Algebra i logika},
     pages = {210--228},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - The interpolation problem in finite-layered pre-Heyting logics
JO  - Algebra i logika
PY  - 2019
SP  - 210
EP  - 228
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/
LA  - ru
ID  - AL_2019_58_2_a4
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T The interpolation problem in finite-layered pre-Heyting logics
%J Algebra i logika
%D 2019
%P 210-228
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/
%G ru
%F AL_2019_58_2_a4
L. L. Maksimova; V. F. Yun. The interpolation problem in finite-layered pre-Heyting logics. Algebra i logika, Tome 58 (2019) no. 2, pp. 210-228. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a4/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR

[2] G. D'Agostino, “$\mu$-Levels of interpolation”, Larisa Maksimova on implication, interpolation, and definability, Outstanding Contrib. Logic, 15, ed. S. Odintsov, Springer, 2018, 155–170 | DOI | MR

[3] A. Karpenko, “Decidability of some interpolation properties for weakly transitive modal logics”, Larisa Maksimova on implication, interpolation, and definability, Outstanding Contrib. Logic, 15, ed. S. Odintsov, Springer, 2018, 171–183 | DOI | MR

[4] W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[5] L. L. Maksimova, V. F. Yun, “Rasshireniya minimalnoi logiki i problema interpolyatsii”, Sib. matem. zh., 59:4 (2018), 863–878 | MR | Zbl

[6] L. L. Maksimova, “Razreshimost interpolyatsionnogo svoistva Kreiga v stroinykh ${\rm J}$-logikakh”, Sib. matem. zh., 53:5 (2012), 1048–1064 | MR | Zbl

[7] L. L. Maksimova, “Interpolyatsiya i proektivnoe svoistvo Beta v stroinykh logikakh”, Algebra i logika, 51:2 (2012), 244–275 | MR | Zbl

[8] L. L. Maksimova, “Proektivnoe svoistvo Beta v stroinykh logikakh”, Algebra i logika, 52:2 (2013), 172–202 | MR | Zbl

[9] L. L. Maksimova, V. F. Yun, “Uznavaemye logiki”, Algebra i logika, 54:2 (2015), 252–274 | MR | Zbl

[10] S. Odintsov, “Logic of classical refutability and class of extensions of minimal logic”, Log. Log. Philos., 9 (2001), 91–107 | DOI | MR | Zbl

[11] S. P. Odintsov, Constructive negations and paraconsistency, Trends Log. Stud. Log. Libr., 26, Springer-Verlag, Dordrecht, 2008 | MR | Zbl

[12] L. L. Maksimova, “Interpolyatsionnaya teorema Kreiga i amalgamiruemye mnogoobraziya”, Doklady AN SSSR, 237:6 (1977), 1281–1284 | MR | Zbl

[13] L. Maksimova, “Restricted interpolation in modal logics”, Advances in modal logic, v. 4, eds. Ph. Balbiani et al., King's College Publ., London, 2003, 297–311 | MR | Zbl

[14] L. L. Maksimova, “Razreshimost slabogo interpolyatsionnogo svoistva nad minimalnoi logikoi”, Algebra i logika, 50:2 (2011), 152–188 | MR | Zbl

[15] L. Maksimova, “Problem of restricted interpolation in superintuitionistic and some modal logics”, Log. J. IGPL, 18:3 (2010), 367–380 | DOI | MR | Zbl

[16] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[17] L. L. Maksimova, “Neyavnaya opredelimost i pozitivnye logiki”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl

[18] L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Logic, 105:1–3 (2000), 83–102 | DOI | MR | Zbl

[19] L. L. Maksimova, V. F. Yun, “Sloi nad minimalnoi logikoi”, Algebra i logika, 55:4 (2016), 449–464 | MR | Zbl

[20] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR

[21] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl

[22] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, 46, Clarendon Press, Oxford, 2005 | MR | Zbl

[23] L. L. Maksimova, V. F. Yun, “Interpolyatsiya nad minimalnoi logikoi i intervaly Odintsova”, Sib. matem. zh., 56:3 (2015), 600–616 | MR | Zbl

[24] L. L. Maksimova, “Negativnaya ekvivalentnost nad minimalnoi logikoi i interpolyatsiya”, Sib. elektron. matem. izv., 11 (2014), 17 pp. http://semr.math.nsc.ru/v11/p1-17.pdf | Zbl

[25] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR