Generalized wreath products of $m$-groups
Algebra i logika, Tome 58 (2019) no. 2, pp. 167-178

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a generalized wreath product of permutation $m$-groups is introduced, and it is proved that an $m$-transitive permutation group embeds into a generalized wreath product of its primitive components.
Mots-clés : $m$-group
Keywords: $m$-transitive representation, primitive component, generalized wreath product.
@article{AL_2019_58_2_a1,
     author = {A. V. Zenkov and O. V. Isaeva},
     title = {Generalized wreath products of $m$-groups},
     journal = {Algebra i logika},
     pages = {167--178},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_2_a1/}
}
TY  - JOUR
AU  - A. V. Zenkov
AU  - O. V. Isaeva
TI  - Generalized wreath products of $m$-groups
JO  - Algebra i logika
PY  - 2019
SP  - 167
EP  - 178
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_2_a1/
LA  - ru
ID  - AL_2019_58_2_a1
ER  - 
%0 Journal Article
%A A. V. Zenkov
%A O. V. Isaeva
%T Generalized wreath products of $m$-groups
%J Algebra i logika
%D 2019
%P 167-178
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_2_a1/
%G ru
%F AL_2019_58_2_a1
A. V. Zenkov; O. V. Isaeva. Generalized wreath products of $m$-groups. Algebra i logika, Tome 58 (2019) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/AL_2019_58_2_a1/