Simple right-alternative unital superalgebras over an algebra of matrices of order~$2$
Algebra i logika, Tome 58 (2019) no. 1, pp. 108-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify simple right-alternative unital superalgebras over a field of characteristic not $2$, whose even part coincides with an algebra of matrices of order $2$. It is proved that such a superalgebra either is a Wall double $W_{2|2}(\omega)$, or is a Shestakov super algebra $S_{4|2}(\sigma)$ (characteristic $3$), or is isomorphic to an asymmetric double, an $8$-dimensional superalgebra depending on four parameters. In the case of an algebraically closed base field, every such superalgebra is isomorphic to an associative Wall double $\mathrm{M}_2[\sqrt{1}]$, an alternative $6$-dimensional Shestakov superalgebra $B_{4|2}$ (characteristic $3$), or an $8$-dimensional Silva–Murakami–Shestakov superalgebra.
Keywords: right-alternative superalgebra, simple superalgebra.
@article{AL_2019_58_1_a6,
     author = {S. V. Pchelintsev and O. V. Shashkov},
     title = {Simple right-alternative unital superalgebras over an algebra of matrices of order~$2$},
     journal = {Algebra i logika},
     pages = {108--131},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a6/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - O. V. Shashkov
TI  - Simple right-alternative unital superalgebras over an algebra of matrices of order~$2$
JO  - Algebra i logika
PY  - 2019
SP  - 108
EP  - 131
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a6/
LA  - ru
ID  - AL_2019_58_1_a6
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A O. V. Shashkov
%T Simple right-alternative unital superalgebras over an algebra of matrices of order~$2$
%J Algebra i logika
%D 2019
%P 108-131
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_1_a6/
%G ru
%F AL_2019_58_1_a6
S. V. Pchelintsev; O. V. Shashkov. Simple right-alternative unital superalgebras over an algebra of matrices of order~$2$. Algebra i logika, Tome 58 (2019) no. 1, pp. 108-131. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a6/

[1] J. R. da Silva, L. S. I. Murakami, I. Shestakov, “On right alternative superalgebras”, Commun. Algebra, 44:1 (2016), 240–252 | MR | Zbl

[2] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye pravoalternativnye superalgebry abeleva tipa kharakteristiki nul”, Izv. RAN. Ser. matem., 79:3 (2015), 131–158 | Zbl

[3] S. V. Pchelintsev, O. V. Shashkov, “Prostye pravoalternativnye superalgebry abeleva tipa, chetnaya chast kotorykh yavlyaetsya polem”, Izv. RAN. Ser. matem., 80:6 (2016), 247–257 | Zbl

[4] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye pravoalternativnye superalgebry s unitarnoi chetnoi chastyu nad polem kharakteristiki 0”, Matem. zametki, 100:4 (2016), 577–585 | Zbl

[5] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye pravoalternativnye superalgebry s poluprostoi silno assotsiativnoi chetnoi chastyu”, Matem. sb., 208:2 (2017), 55–69 | Zbl

[6] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye pravoalternativnye unitalnye superalgebry s silno assotsiativnoi chetnoi chastyu”, Matem. sb., 208:4 (2017), 73–86 | Zbl

[7] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye pravoalternativnye unitalnye superalgebry s assotsiativno-kommutativnoi chetnoi chastyu nad polem kharakteristiki nul”, Izv. RAN. Ser. matem., 82:3 (2018), 136–153 | Zbl

[8] N. Svartholm, “On the algebras of relativistic quantum mechanics”, Proc. Roy. Phys. Soc. Lund,, 12 (1942), 94–108 | MR | Zbl

[9] N. Jacobson, Structure and representations of Jordan algebras, Colloq. Publ., 39, Am. Math. Soc., Providence, RI, 1968 | MR | Zbl

[10] A. M. Slinko, I. P. Shestakov, “Pravye predstavleniya algebr”, Algebra i logika, 13:5 (1974), 544–588

[11] L. I. Murakami, I. Shestakov, “Irreducible unital right alternative bimodules”, J. Algebra, 246:2 (2001), 897–914 | MR | Zbl

[12] S. V. Pchelintsev, O. V. Shashkov, “Prostye konechnomernye unitalnye pravoalternativnye superalgebry nad algebroi matrits poryadka 2”, Mezhd. konf. “Maltsevskie chteniya”, Tez. dokl. (20–24 noyabrya 2017, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2017, 128 http://math.nsc.ru/conference/malmeet/17/malmeet17.pdf

[13] A. A. Albert, “On right alternative algebras”, Ann. Math. (2), 50 (1949), 318–328 | MR | Zbl

[14] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978

[15] E. Kleinfeld, “Right alternative rings”, Proc. Am. Math. Soc., 4 (1953), 939–944 | MR | Zbl