Simple right-alternative unital superalgebras over an algebra of matrices of order $2$
Algebra i logika, Tome 58 (2019) no. 1, pp. 108-131
Voir la notice de l'article provenant de la source Math-Net.Ru
We classify simple right-alternative unital superalgebras over a field of characteristic not $2$, whose even part coincides with an algebra of matrices of order $2$. It is proved that such a superalgebra either is a Wall double $W_{2|2}(\omega)$, or is a Shestakov super algebra $S_{4|2}(\sigma)$ (characteristic $3$), or is isomorphic to an asymmetric double, an $8$-dimensional superalgebra depending on four parameters. In the case of an algebraically closed base field, every such superalgebra is isomorphic to an associative Wall double $\mathrm{M}_2[\sqrt{1}]$, an alternative $6$-dimensional Shestakov superalgebra $B_{4|2}$ (characteristic $3$), or an $8$-dimensional Silva–Murakami–Shestakov superalgebra.
Keywords:
right-alternative superalgebra, simple superalgebra.
@article{AL_2019_58_1_a6,
author = {S. V. Pchelintsev and O. V. Shashkov},
title = {Simple right-alternative unital superalgebras over an algebra of matrices of order~$2$},
journal = {Algebra i logika},
pages = {108--131},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a6/}
}
TY - JOUR AU - S. V. Pchelintsev AU - O. V. Shashkov TI - Simple right-alternative unital superalgebras over an algebra of matrices of order $2$ JO - Algebra i logika PY - 2019 SP - 108 EP - 131 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a6/ LA - ru ID - AL_2019_58_1_a6 ER -
S. V. Pchelintsev; O. V. Shashkov. Simple right-alternative unital superalgebras over an algebra of matrices of order $2$. Algebra i logika, Tome 58 (2019) no. 1, pp. 108-131. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a6/