Combinatorics on binary words and codimensions of identities in left nilpotent algebras
Algebra i logika, Tome 58 (2019) no. 1, pp. 35-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical characteristics of polynomial identities of left nilpotent algeb­ras are examined. Previously, we came up with a construction which, given an infinite binary word, allowed us to build a two-step left nilpotent algebra with specified properties of the codimension sequence. However, the class of the infinite words used was confined to periodic words and Sturm words. Here the previously proposed approach is generalized to a considerably more general case. It is proved that for any algebra constructed given a binary word with subexponential function of combinatorial complexity, there exists a PI-exponent. And its precise value is computed.
Keywords: left nilpotent algebra, polynomial identity, codimension, subexponential function of combinatorial complexity, PI-exponent.
@article{AL_2019_58_1_a2,
     author = {M. V. Zaicev and D. D. Repov\v{s}},
     title = {Combinatorics on binary words and codimensions of identities in left nilpotent algebras},
     journal = {Algebra i logika},
     pages = {35--51},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a2/}
}
TY  - JOUR
AU  - M. V. Zaicev
AU  - D. D. Repovš
TI  - Combinatorics on binary words and codimensions of identities in left nilpotent algebras
JO  - Algebra i logika
PY  - 2019
SP  - 35
EP  - 51
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a2/
LA  - ru
ID  - AL_2019_58_1_a2
ER  - 
%0 Journal Article
%A M. V. Zaicev
%A D. D. Repovš
%T Combinatorics on binary words and codimensions of identities in left nilpotent algebras
%J Algebra i logika
%D 2019
%P 35-51
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_1_a2/
%G ru
%F AL_2019_58_1_a2
M. V. Zaicev; D. D. Repovš. Combinatorics on binary words and codimensions of identities in left nilpotent algebras. Algebra i logika, Tome 58 (2019) no. 1, pp. 35-51. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a2/

[1] Y. Bahturin, V. Drensky, “Graded polynomial identities of matrices”, Linear Algebra Appl., 357:1–3 (2002), 15–34 | MR | Zbl

[2] A. Regev, “Existence of identities in $A \otimes B$”, Isr. J. Math., 11 (1972), 131–152 | MR | Zbl

[3] S. P. Mischenko, “Rost mnogoobrazii algebr Li”, UMN, 45:6(276) (1990), 25–45

[4] M. V. Zaitsev, “Tozhdestva affinnykh algebr Kapa–Mudi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1996, no. 2, 33–36

[5] M. V. Zaitsev, “Mnogoobraziya affinnykh algebr Kapa–Mudi”, Matem. zametki, 62:1 (1997), 95–102 | Zbl

[6] S. P. Mishchenko, V. M. Petrogradsky, “Exponents of varieties of Lie algebras with a nilpotent commutator subalgebra”, Commun. Algebra, 27:5 (1999), 2223–2230 | MR | Zbl

[7] A. Giambruno, M. Zaicev, “On codimension growth of finitely generated associative algebras”, Adv. Math., 140:2 (1998), 145–155 | MR | Zbl

[8] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI-algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | MR | Zbl

[9] M. V. Zaitsev, “Tselochislennost eksponent rosta tozhdestv konechnomernykh algebr Li”, Izv. RAN. Ser. matem., 66:3 (2002), 23–48 | Zbl

[10] A. Giambruno, I. Shestakov, M. Zaicev, “Finite-dimensional non-associative algebras and codimension growth”, Adv. Appl. Math., 47:1 (2011), 125–139 | MR | Zbl

[11] M. V. Zaitsev, S. P. Mischenko, “Tozhdestva superalgebr Li s nilpotentnym kommutantom”, Algebra i logika, 47:5 (2008), 617–645 | Zbl

[12] M. V. Zaicev, S. P. Mishchenko, “An example of a variety of Lie algebras with a fractional exponent”, J. Math. Sci., New York, 93:6 (1999), 977–982 | MR | Zbl

[13] A. B. Verevkin, M. V. Zaitsev, S. P. Mischenko, “Dostatochnoe uslovie sovpadeniya nizhnei i verkhnei eksponent mnogoobraziya lineinykh algebr”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2011, no. 2, 36–39

[14] A. Giambruno, M. Zaicev, “On codimension growth of finite-dimensional Lie superalgebras”, J. Lond. Math. Soc, II. Ser., 85:2 (2012), 534–548 | MR | Zbl

[15] O. Malyusheva, S. Mishchenko, A. Verevkin, “Series of varieties of Lie algebras of different fractional exponents”, C. R. Acad. Bulg. Sci., 66:3 (2013), 321–330 | MR | Zbl

[16] M. Zaicev, “On existence of Pi-exponents of codimension growth”, Electron. Res. Announc. Math. Sci., 21 (2014), 113–119 | MR | Zbl

[17] A. Giambruno, S. Mishchenko, M. Zaicev, “Codimensions of algebras and growth functions”, Adv. Math., 217:3 (2008), 1027–1052 | MR | Zbl

[18] M. V. Zaitsev, “Rost korazmernostei metabelevykh algebr”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2017, no. 6, 15–20

[19] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985

[20] V. Drensky, Free algebras and Pi-algebras, Graduate course in algebra, Springer, Singapore, 2000 | MR | Zbl

[21] A. Giambruno, M. Zaicev, Polynomial identities and asymptotic methods, Math. Surv. Monogr., 122, Am. Math. Soc., Providence, RI, 2005 | MR | Zbl

[22] G. Dzheims, Teoriya predstavlenii simmetricheskikh grupp, Nauka, M., 1982

[23] M. Lothaire, Algebraic combinatorics on words, Encycl. Math. Appl., 90, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[24] A. M. Shur, “O vychislenii parametrov i tipov povedeniya kombinatornoi slozhnosti regulyarnykh yazykov”, Tr. IMM UrO RAN, 16, no. 2, 2010, 270–287

[25] J. Balogh, V. Bollobas, “Hereditary properties of words”, Theor. Inform. Appl., 39:1 (2005), 49–65 | MR | Zbl