Some periodic groups admitting a finite regular automorphism of even order
Algebra i logika, Tome 58 (2019) no. 1, pp. 22-34

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of an infinite group with automorphism of order $2p$ where $p$ is an odd prime leaving only the identity element fixed.
Keywords: periodic group, locally finite group
Mots-clés : Frobenius group, auto­morphism.
@article{AL_2019_58_1_a1,
     author = {E. B. Durakov and A. I. Sozutov},
     title = {Some periodic groups admitting a finite regular automorphism of even order},
     journal = {Algebra i logika},
     pages = {22--34},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/}
}
TY  - JOUR
AU  - E. B. Durakov
AU  - A. I. Sozutov
TI  - Some periodic groups admitting a finite regular automorphism of even order
JO  - Algebra i logika
PY  - 2019
SP  - 22
EP  - 34
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/
LA  - ru
ID  - AL_2019_58_1_a1
ER  - 
%0 Journal Article
%A E. B. Durakov
%A A. I. Sozutov
%T Some periodic groups admitting a finite regular automorphism of even order
%J Algebra i logika
%D 2019
%P 22-34
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/
%G ru
%F AL_2019_58_1_a1
E. B. Durakov; A. I. Sozutov. Some periodic groups admitting a finite regular automorphism of even order. Algebra i logika, Tome 58 (2019) no. 1, pp. 22-34. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/