Some periodic groups admitting a finite regular automorphism of even order
Algebra i logika, Tome 58 (2019) no. 1, pp. 22-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of an infinite group with automorphism of order $2p$ where $p$ is an odd prime leaving only the identity element fixed.
Keywords: periodic group, locally finite group
Mots-clés : Frobenius group, auto­morphism.
@article{AL_2019_58_1_a1,
     author = {E. B. Durakov and A. I. Sozutov},
     title = {Some periodic groups admitting a finite regular automorphism of even order},
     journal = {Algebra i logika},
     pages = {22--34},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/}
}
TY  - JOUR
AU  - E. B. Durakov
AU  - A. I. Sozutov
TI  - Some periodic groups admitting a finite regular automorphism of even order
JO  - Algebra i logika
PY  - 2019
SP  - 22
EP  - 34
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/
LA  - ru
ID  - AL_2019_58_1_a1
ER  - 
%0 Journal Article
%A E. B. Durakov
%A A. I. Sozutov
%T Some periodic groups admitting a finite regular automorphism of even order
%J Algebra i logika
%D 2019
%P 22-34
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/
%G ru
%F AL_2019_58_1_a1
E. B. Durakov; A. I. Sozutov. Some periodic groups admitting a finite regular automorphism of even order. Algebra i logika, Tome 58 (2019) no. 1, pp. 22-34. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a1/

[1] B. Fischer, “Finite groups admitting a fixed-point-free automorphism of order $2p$”, J. Algebra, 3:1 (1966), 99–114 | MR | Zbl

[2] V. Fischer, “Finite groups admitting a fixed-point-free automorphism of order $2p$. II”, J. Algebra, 5:1 (1967), 25–40 | MR | Zbl

[3] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985

[4] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975

[5] A. I. Sozutov, E. B. Durakov, “O tochno dvazhdy tranzitivnykh gruppakh s obobschenno konechnymi elementami”, Sib. matem. zh., 58:5 (2017), 1144–1149 | Zbl

[6] A. I. Sozutov, “O gruppakh s konechnym regulyarnym avtomorfizmom chetnogo poryadka”, Tez. dokl. mezhd. konf. “Aktualnye problemy prikladnoi matematiki i fiziki” (Kabardino-Balkarskaya resp., Prielbruse, Nalchik 17–21 maya 2017 g.), In-t prikl. matem. i avtomatizatsii KBNTs RAN, 2017, 193–194

[7] A. I. Sozutov, E. B. Durakov, Tez. dokl. Vserossiiskoi nauch. konf. “Algebra, analiz i smezhnye voprosy matematicheskogo modelirovaniya” (29 sentyabrya–1 oktyabrya 2017 g., g. Vladikavkaz), Sev.-Oset. gos. un-t im. K. L. Khetagurova, Vladikavkaz, 2017, 45

[8] A. M. Popov, A. I. Sozutov, V. P. Shunkov, Gruppy s sistemami frobeniusovykh podgrupp, IPTs KGTU, Krasnoyarsk, 2004

[9] X. Neiman, Mnogoobraziya grupp, Mir, M., 1969

[10] M. Kholl, Teoriya grupp, IL, M., 1962

[11] V. P. Shunkov, “Kharakterizatsiya nekotorykh konechnykh grupp Frobeniusa”, Matem. zametki, 43:6 (1988), 725–732

[12] V. P. Shunkov, “O parakh Frobeniusa vida $(F\lambda V, V)$”, Matem. sb., 180:10 (1989), 1311–1324

[13] V. M. Busarkin, Yu. M. Gorchakov, Konechnye rasscheplyaemye gruppy, Nauka, M., 1968

[14] A. I. Sozutov, A. K. Shlepkin, “O gruppakh s normalnoi komponentoi rasschepleniya”, Sib. matem. zh., 38:4 (1997), 897–914 | Zbl

[15] E.I. Khukhro, Nilpotentnye gruppy i ikh avtomorfizmy prostogo poryadka, Fraiburg, 1992

[16] V. A. Kreknin, A. I. Kostrikin, “Ob algebrakh Li s regulyarnym avtomorfizmom”, DAN SSSR, 149:2 (1963), 249–251 | Zbl

[17] D. Gorenstein, I. N. Herstein, “Finite groups admitting a fixed-point-free automorphism of order 4”, Am. J. Math., 83 (1961), 71–78 | MR | Zbl