Structure of Quasivariety Lattices. I. Independent Axiomatizability
Algebra i logika, Tome 57 (2018) no. 6, pp. 684-710

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a sufficient condition for a quasivariety $\mathbf{K}$ to have continuum many subquasivarieties that have no independent quasi-equational bases relative to $\mathbf{K}$ but have $\omega$-independent quasi-equational bases relative to $\mathbf{K}$. This condition also implies that $\mathbf{K}$ is $Q$-universal.
Keywords: independent basis, quasi-identity, quasivariety, quasivariety lattice, Q-universality.
@article{AL_2018_57_6_a3,
     author = {A. V. Kravchenko and A. M. Nurakunov and M. V. Schwidefsky},
     title = {Structure of {Quasivariety} {Lattices.} {I.} {Independent} {Axiomatizability}},
     journal = {Algebra i logika},
     pages = {684--710},
     publisher = {mathdoc},
     volume = {57},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/}
}
TY  - JOUR
AU  - A. V. Kravchenko
AU  - A. M. Nurakunov
AU  - M. V. Schwidefsky
TI  - Structure of Quasivariety Lattices. I. Independent Axiomatizability
JO  - Algebra i logika
PY  - 2018
SP  - 684
EP  - 710
VL  - 57
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/
LA  - ru
ID  - AL_2018_57_6_a3
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%A A. M. Nurakunov
%A M. V. Schwidefsky
%T Structure of Quasivariety Lattices. I. Independent Axiomatizability
%J Algebra i logika
%D 2018
%P 684-710
%V 57
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/
%G ru
%F AL_2018_57_6_a3
A. V. Kravchenko; A. M. Nurakunov; M. V. Schwidefsky. Structure of Quasivariety Lattices. I. Independent Axiomatizability. Algebra i logika, Tome 57 (2018) no. 6, pp. 684-710. http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/