Structure of Quasivariety Lattices. I. Independent Axiomatizability
Algebra i logika, Tome 57 (2018) no. 6, pp. 684-710.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a sufficient condition for a quasivariety $\mathbf{K}$ to have continuum many subquasivarieties that have no independent quasi-equational bases relative to $\mathbf{K}$ but have $\omega$-independent quasi-equational bases relative to $\mathbf{K}$. This condition also implies that $\mathbf{K}$ is $Q$-universal.
Keywords: independent basis, quasi-identity, quasivariety, quasivariety lattice, Q-universality.
@article{AL_2018_57_6_a3,
     author = {A. V. Kravchenko and A. M. Nurakunov and M. V. Schwidefsky},
     title = {Structure of {Quasivariety} {Lattices.} {I.} {Independent} {Axiomatizability}},
     journal = {Algebra i logika},
     pages = {684--710},
     publisher = {mathdoc},
     volume = {57},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/}
}
TY  - JOUR
AU  - A. V. Kravchenko
AU  - A. M. Nurakunov
AU  - M. V. Schwidefsky
TI  - Structure of Quasivariety Lattices. I. Independent Axiomatizability
JO  - Algebra i logika
PY  - 2018
SP  - 684
EP  - 710
VL  - 57
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/
LA  - ru
ID  - AL_2018_57_6_a3
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%A A. M. Nurakunov
%A M. V. Schwidefsky
%T Structure of Quasivariety Lattices. I. Independent Axiomatizability
%J Algebra i logika
%D 2018
%P 684-710
%V 57
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/
%G ru
%F AL_2018_57_6_a3
A. V. Kravchenko; A. M. Nurakunov; M. V. Schwidefsky. Structure of Quasivariety Lattices. I. Independent Axiomatizability. Algebra i logika, Tome 57 (2018) no. 6, pp. 684-710. http://geodesic.mathdoc.fr/item/AL_2018_57_6_a3/

[1] G. Birkhoff, “Universal algebra”, Proc. First Canadian Math. Congr. (Montreal, 1945), Univ. of Toronto Press, Toronto, 1946, 310–326 | MR | Zbl

[2] A. I. Maltsev, “O nekotorykh pogranichnykh voprosakh algebry i logiki”, Tr. Mezhd. kongressa matematikov (Moskva, 1966), Mir, M., 1968, 217–231

[3] V. P. Belkin, V. A. Gorbunov, “Filtry reshetok kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:4 (1975), 373–392 | Zbl

[4] A. I. Budkin, “O filtrakh v reshetke kvazimnogoobrazii grupp”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 875–881 | Zbl

[5] V. A. Gorbunov, “Pokrytiya v reshetkakh kvazimnogoobrazii i nezavisimaya aksiomatiziruemost”, Algebra i logika, 16:5 (1977), 507–548 | Zbl

[6] A. I. Budkin, “O kvazimnogoobraziyakh grupp, ne imeyuschikh pokrytii”, Matem. zametki, 37:5 (1985), 609–616 | Zbl

[7] V. K. Kartashov, “O reshetkakh kvazimnogoobrazii unarov”, Sib. matem. zh., 26:3 (1985), 173–193

[8] S. V. Sizyi, “Kvazimnogoobraziya grafov”, Sib. matem. zh., 35:4 (1994), 879–892 | Zbl

[9] M. V. Sapir, “The lattice of quasivarieties of semigroups”, Algebra Univers., 21:2/3 (1985), 172–180 | DOI | MR | Zbl

[10] M. E. Adams, W. Dziobiak, “Q-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl

[11] W. Dziobiak, “On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices”, Algebra Univers., 22:2/3 (1986), 205–214 | DOI | MR | Zbl

[12] V. A. Gorbunov, “Stroenie reshetok mnogoobrazii i reshetok kvazimnogoobrazii: skhodstvo i razlichie. II”, Algebra i logika, 34:4 (1995), 369–397 | Zbl

[13] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[14] M. E. Adams, W. Dziobiak, “Finite-to-finite universal quasivarieties are Q-universal”, Algebra Univers., 46:1/2 (2001), 253–283 | DOI | MR | Zbl

[15] A. M. Nurakunov, “Unreasonable lattices of quasivarieties”, Internat. J. Algebra Comput., 22:3 (2012), 1250006, 17 pp. | DOI | MR | Zbl

[16] A. M. Nurakunov, “Reshetki kvazimnogoobrazii tochechnykh abelevykh grupp”, Algebra i logika, 53:3 (2014), 372–400 | Zbl

[17] M. V. Shvidefski, “O slozhnosti reshetok kvazimnogoobrazii”, Algebra i logika, 54:3 (2015), 381–398 | Zbl

[18] S. M. Lutsak, “O slozhnosti reshetok kvazimnogoobrazii”, Sib. elektron. matem. izv., 14 (2017), 92–97 http://semr.math.nsc.ru/v14/p92-97.pdf | Zbl

[19] A. I. Maltsev, “Universalno aksiomatiziruemye podklassy lokalno konechnykh klassov modelei”, Sib. matem. zh., 8:5 (1967), 1005–1014 | Zbl

[20] A. Tarski, “Equational logic and equational theories of algebras”, Contrib. Math. Logic, Proc. Logic Colloq. (Hannover, 1966), North-Holland, Amsterdam, 1968, 275–288 | MR

[21] A. V. Kravchenko, A. M. Nurakunov, M. V. Shvidefski, “O stroenii reshetok kvazimnogoobrazii. II. Nerazreshimye problemy”, Algebra i logika

[22] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970

[23] G.A. Fraser, A. Horn, “Congruence relations in direct products”, Proc. Am. Math. Soc., 26 (1970), 390–394 | DOI | MR | Zbl

[24] W. Dziobiak, Workshop on Comput. Algebra and Appl. to Semigroup Theory, Manuscript of the lecture notes (the Center of Algebra of Lisbon Univ., Portugal, 17–21 November, 1997), 61 pp.

[25] V. Dzebyak, “Kvazimnogoobraziya polureshetok Sugikhara s involyutsiei”, Algebra i logika, 39:1 (2000), 47–65 | Zbl