The Specht property of $L$-varieties of vector spaces over an arbitrary field
Algebra i logika, Tome 57 (2018) no. 5, pp. 556-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Specht property for $L$-varieties of vector spaces embedded in associative algebras over an arbitrary field. An $L$-variety with no finite basis of identities over a field, which is the join of two Spechtian $L$-varieties, is exemplified. A condition under which $L$-varieties will have the Specht property is found.
Keywords: identity of vector space, basis of identities, $L$-variety, Spechtian $L$-variety.
@article{AL_2018_57_5_a3,
     author = {A. V. Kislitsin},
     title = {The {Specht} property of $L$-varieties of vector spaces over an arbitrary field},
     journal = {Algebra i logika},
     pages = {556--566},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/}
}
TY  - JOUR
AU  - A. V. Kislitsin
TI  - The Specht property of $L$-varieties of vector spaces over an arbitrary field
JO  - Algebra i logika
PY  - 2018
SP  - 556
EP  - 566
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/
LA  - ru
ID  - AL_2018_57_5_a3
ER  - 
%0 Journal Article
%A A. V. Kislitsin
%T The Specht property of $L$-varieties of vector spaces over an arbitrary field
%J Algebra i logika
%D 2018
%P 556-566
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/
%G ru
%F AL_2018_57_5_a3
A. V. Kislitsin. The Specht property of $L$-varieties of vector spaces over an arbitrary field. Algebra i logika, Tome 57 (2018) no. 5, pp. 556-566. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/

[1] Yu. P. Razmyslov, “O konechnoi baziruemosti tozhdestv matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12:1 (1973), 83–113

[2] G. V. Dorofeev, “O nekotorykh svoistvakh ob'edineniya mnogoobrazii algebr”, Algebra i logika, 16:1 (1977), 24–39 | MR | Zbl

[3] A. V. Kislitsin, “O shpekhtovosti $L$-mnogoobrazii vektornykh prostranstv”, Algebra i logika, 56:5 (2017), 548–558 | MR | Zbl

[4] A. V. Kislitsin, “O shpekhtovosti $L$-mnogoobrazii vektornykh prostranstv”, Mezhd. konf. Maltsevskie chteniya (21–25 noyabrya 2016, Novosibirsk), Tez. dokl., IM SO RAN i NGU, Novosibirsk, 2016, 147 http://math.nsc.ru/conference/malmeet/16/malmeet16.pdf

[5] I. M. Isaev, A. V. Kislitsin, “Tozhdestva vektornykh prostranstv, vlozhennykh v lineinye algebry”, Sib. elektron. matem. izv., 12 (2015), 328–343 http://semr.math.nsc.ru/v12/p328-343.pdf | DOI | Zbl

[6] I. M. Isaev, A. V. Kislitsin, “Tozhdestva vektornykh prostranstv i primery konechnomernykh lineinykh algebr, ne imeyuschikh konechnogo bazisa tozhdestv”, Algebra i logika, 52:4 (2013), 435–460 | MR | Zbl

[7] A. V. Kislitsin, “O tozhdestvakh prostranstv lineinykh preobrazovanii nad beskonechnym polem”, Izv. Altaiskogo gos. un-ta, 65:1/2 (2010), 37–41

[8] O. B. Finogenova, “Mnogoobraziya assotsiativnykh algebr, udovletvoryayuschie tozhdestvam Engelya”, Algebra i logika, 43:4 (2004), 482–505 | MR | Zbl

[9] O. B. Finogenova, “Pochti lievo nilpotentnye nepervichnye mnogoobraziya assotsiativnykh algebr”, Tr. IMM UrO RAN, 21, no. 4, 2015, 282–291 | MR

[10] Yu. N. Maltsev, “Pochti kommutativnye mnogoobraziya assotsiativnykh kolets”, Sib. matem. zh., 17:5 (1976), 1086–1096 | MR | Zbl

[11] W. Specht, “Gesetze in Ringen. I”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl

[12] A. N. Krasilnikov, “O konechnosti bazisa tozhdestv nekotorykh mnogoobrazii assotsiativnykh kolets”, Algebraicheskie sistemy, Mezhvuz. sb. nauch. tr., Ivanovo, 1991, 18–26