The Specht property of $L$-varieties of vector spaces over an arbitrary field
Algebra i logika, Tome 57 (2018) no. 5, pp. 556-566

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Specht property for $L$-varieties of vector spaces embedded in associative algebras over an arbitrary field. An $L$-variety with no finite basis of identities over a field, which is the join of two Spechtian $L$-varieties, is exemplified. A condition under which $L$-varieties will have the Specht property is found.
Keywords: identity of vector space, basis of identities, $L$-variety, Spechtian $L$-variety.
@article{AL_2018_57_5_a3,
     author = {A. V. Kislitsin},
     title = {The {Specht} property of $L$-varieties of vector spaces over an arbitrary field},
     journal = {Algebra i logika},
     pages = {556--566},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/}
}
TY  - JOUR
AU  - A. V. Kislitsin
TI  - The Specht property of $L$-varieties of vector spaces over an arbitrary field
JO  - Algebra i logika
PY  - 2018
SP  - 556
EP  - 566
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/
LA  - ru
ID  - AL_2018_57_5_a3
ER  - 
%0 Journal Article
%A A. V. Kislitsin
%T The Specht property of $L$-varieties of vector spaces over an arbitrary field
%J Algebra i logika
%D 2018
%P 556-566
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/
%G ru
%F AL_2018_57_5_a3
A. V. Kislitsin. The Specht property of $L$-varieties of vector spaces over an arbitrary field. Algebra i logika, Tome 57 (2018) no. 5, pp. 556-566. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a3/