Theories of relatively free solvable groups with extra predicate
Algebra i logika, Tome 57 (2018) no. 4, pp. 456-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study elementary and universal theories of relatively free solvable groups in a group signature expanded by one predicate distinguishing primitive or annihilating systems of elements.
Mots-clés : solvable group
Keywords: nilpotent group, elementary theory, universal theory.
@article{AL_2018_57_4_a3,
     author = {E. I. Timoshenko},
     title = {Theories of relatively free solvable groups with extra predicate},
     journal = {Algebra i logika},
     pages = {456--475},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_4_a3/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Theories of relatively free solvable groups with extra predicate
JO  - Algebra i logika
PY  - 2018
SP  - 456
EP  - 475
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_4_a3/
LA  - ru
ID  - AL_2018_57_4_a3
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Theories of relatively free solvable groups with extra predicate
%J Algebra i logika
%D 2018
%P 456-475
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_4_a3/
%G ru
%F AL_2018_57_4_a3
E. I. Timoshenko. Theories of relatively free solvable groups with extra predicate. Algebra i logika, Tome 57 (2018) no. 4, pp. 456-475. http://geodesic.mathdoc.fr/item/AL_2018_57_4_a3/

[1] W. Szmielew, “Elementary properties of Abelian groups”, Fundam. Math., 41 (1955), 203–271 | DOI | MR | Zbl

[2] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. AN SSSR, 130:3 (1960), 495–498 | MR | Zbl

[3] O. Chapuis, “On the theories of free solvable groups”, J. Pure Appl. Algebra, 131:1 (1998), 13–24 | DOI | MR | Zbl

[4] O. Chapuis, “Universal theory of certain solvable groups and bounded Ore group rings”, J. Algebra, 176:2 (1995), 368–391 | DOI | MR | Zbl

[5] O. Chapuis, “$\forall$-free metabelian groups”, J. Symb. Log., 62:1 (1997), 159–174 | DOI | MR | Zbl

[6] N. S. Romanovskii, “Ob universalnoi teorii svobodnoi razreshimoi gruppy”, Algebra i logika, 51:3 (2012), 385–391 | MR | Zbl

[7] M. I. Kargopolov, V. N. Remeslennikov, N. S. Romanovskii, V. A. Romankov, V. A. Churkin, “Algoritmicheskie problemy dlya Ó-stepennykh grupp”, Algebra i logika, 8:6 (1969), 643–659 | MR

[8] Yu. L. Ershov, “Ob elementarnykh teoriyakh grupp”, Dokl. AN SSSR, 203:6 (1972), 1240–1243 | MR | Zbl

[9] N. S. Romanovskii, “Ob elementarnoi teorii pochti politsiklicheskoi gruppy”, Matem. sb., 111(153):1 (1980), 135–143 | MR | Zbl

[10] G. A. Noskov, “Ob elementarnoi teorii konechno porozhdennoi pochti razreshimoi gruppy”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 498–517 | MR | Zbl

[11] V. A. Romankov, “O nerazreshimosti problemy endomorfnoi svodimosti v svobodnykh nilpotentnykh gruppakh i v svobodnykh koltsakh”, Algebra i logika, 16:4 (1977), 457–471 | MR | Zbl

[12] V. A. Romankov, “Ob uravneniyakh v svobodnykh metabelevykh gruppakh”, Sib. matem. zh., 20:3 (1979), 671–673 | MR | Zbl

[13] V. A. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | MR | Zbl

[14] V. A. Romankov, “Ob universalnoi teorii nilpotentnykh grupp”, Matem. zametki, 25:4 (1979), 487–495 | MR | Zbl

[15] E. I. Timoshenko, “Ob universalnoi teorii svobodnoi polinilpotentnoi gruppy”, Izv. RAN. Ser. matem., 80:3 (2016), 173–183 | DOI | MR | Zbl

[16] A. G. Myasnikov, N. S. Romanovskii, “Logicheskie aspekty teorii delimykh zhestkikh grupp”, DAN, 459:2 (2014), 154–155 | MR | Zbl

[17] A. H. Rhemtulla, M. Akhavan-Malayeri, “Commutator length of abelian-by-nilpotent groups”, Glasg. Math. J., 40:1 (1998), 117–121 | DOI | MR | Zbl

[18] E. I. Timoshenko, “K voprosu ob elementarnoi ekvivalentnosti grupp”, Algebra, v. 1, Irkutskii gos. un-t, 1972, 92–96

[19] E. I. Timoshenko, “Ob universalno ekvivalentnykh razreshimykh gruppakh”, Algebra i logika, 39:2 (2000), 227–240 | MR | Zbl

[20] Ch. K. Gupta, E. I. Timoshenko, “O formulnosti i algebraichnosti mnozhestv annuliruyuschikh i porozhdayuschikh naborov elementov dlya nekotorykh otnositelno svobodnykh razreshimykh grupp”, Sib. matem. zh., 47:4 (2006), 769–779 | MR | Zbl

[21] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969

[22] E. I. Timoshenko, Endomorfizmy i universalnye teorii razreshimykh grupp, izd-vo NGTU, Novosibirsk, 2011

[23] C. K. Gupta, E. I. Timoshenko, “Primitivity in the free groups of the variety $\mathfrak A_m\mathfrak A_n$”, Commun. Algebra, 24:9 (1996), 2859–2876 | DOI | MR | Zbl

[24] V. A. Romankov, “Kriterii primitivnosti sistem elementov svobodnoi metabelevoi gruppy”, Ukr. matem. zh., 43:7–8 (1991), 996–1002 | MR | Zbl | Zbl

[25] S. Bachmuth, “Automorphisms of free metabelian groups”, Trans. Am. Math. Soc., 118 (1965), 93–104 | DOI | MR | Zbl

[26] C. K. Gupta, N. D. Gupta, G. A. Noskov, “Some applications of Artamonov–Quillen–Suslin theorems to metabelian inner rank and primitivity”, Can. J. Math., 46:2 (1994), 298–307 | DOI | MR | Zbl

[27] M. J. Evans, “Presentations of the free metabelian group of rank 2”, Can. Math. Bull., 37:4 (1994), 468–472 | DOI | MR | Zbl

[28] N. S. Romanovskii, E. I. Timoshenko, “O nekotorykh elementarnykh svoistvakh 2-stupenno razreshimykh grupp”, Sib. matem. zh., 44:2 (2003), 438–443 | MR | Zbl

[29] E. I. Timoshenko, “O primitivnykh sistemakh elementov v mnogoobrazii $\mathfrak{AN}_2$ i nekotorykh lokalno konechnykh mnogoobraziyakh grupp”, Algebra i logika, 37:6 (1998), 687–699 | MR | Zbl

[30] Yu. G. Penzin, “O razreshimosti nekotorykh teorii tselykh chisel”, Sib. matem. zh., 14:5 (1973), 1139–1143 | MR | Zbl

[31] P. W. Stroud, Topics in the theory of verbal subgroups, PhD Thesis, Univ. Cambridge, 1966

[32] J. Nielsen, “Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden”, Math. Ann., 78 (1917), 385–397 | DOI | MR | Zbl

[33] A. I. Maltsev, “Ob uravnenii $zxyx^{-1}y^{-1}z^{-1}=aba^{-1}b^{-1}$ v svobodnoi gruppe”, Algebra i logika, 1:5 (1962), 45–50 | Zbl

[34] O. Kharlampovich, A. Myasnikov, “Definable sets in a hyperbolic group”, Int. J. Algebra and Comput., 23:1 (2013), 91–110 | DOI | MR | Zbl

[35] A. L. Shmelkin, “Svobodnye polinilpotentnye gruppy”, Dokl. AN SSSR, 151:1 (1963), 73–75 | MR | Zbl

[36] A. L. Shmelkin, “Svobodnye polinilpotentnye gruppy”, Izv. AN SSSR. Cer. matem., 28:1 (1964), 91–122 | MR | Zbl

[37] P. C. Eklof, R. F. Fischer, “The elementary theory of abelian groups”, Ann. Math. Logic, 4:2 (1972), 115–171 | DOI | MR | Zbl

[38] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 2-e izd., Nauka, M., 1987 | MR