Characterization of simple symplectic groups of degree 4 over locally finite fields in the class of periodic groups
Algebra i logika, Tome 57 (2018) no. 3, pp. 306-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a periodic group containing an element of order 2 such that each of its finite subgroups of even order lies in a finite subgroup isomorphic to a simple symplectic group of degree 4. It is shown that $G$ is isomorphic to a simple symplectic group $S_4(Q)$ of degree 4 over some locally finite field $Q$.
Keywords: periodic group, locally finite field, simple symplectic group.
@article{AL_2018_57_3_a3,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {Characterization of simple symplectic groups of degree~4 over locally finite fields in the class of periodic groups},
     journal = {Algebra i logika},
     pages = {306--320},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Characterization of simple symplectic groups of degree 4 over locally finite fields in the class of periodic groups
JO  - Algebra i logika
PY  - 2018
SP  - 306
EP  - 320
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/
LA  - ru
ID  - AL_2018_57_3_a3
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T Characterization of simple symplectic groups of degree 4 over locally finite fields in the class of periodic groups
%J Algebra i logika
%D 2018
%P 306-320
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/
%G ru
%F AL_2018_57_3_a3
D. V. Lytkina; V. D. Mazurov. Characterization of simple symplectic groups of degree 4 over locally finite fields in the class of periodic groups. Algebra i logika, Tome 57 (2018) no. 3, pp. 306-320. http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/