Characterization of simple symplectic groups of degree~4 over locally finite fields in the class of periodic groups
Algebra i logika, Tome 57 (2018) no. 3, pp. 306-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a periodic group containing an element of order 2 such that each of its finite subgroups of even order lies in a finite subgroup isomorphic to a simple symplectic group of degree 4. It is shown that $G$ is isomorphic to a simple symplectic group $S_4(Q)$ of degree 4 over some locally finite field $Q$.
Keywords: periodic group, locally finite field, simple symplectic group.
@article{AL_2018_57_3_a3,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {Characterization of simple symplectic groups of degree~4 over locally finite fields in the class of periodic groups},
     journal = {Algebra i logika},
     pages = {306--320},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Characterization of simple symplectic groups of degree~4 over locally finite fields in the class of periodic groups
JO  - Algebra i logika
PY  - 2018
SP  - 306
EP  - 320
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/
LA  - ru
ID  - AL_2018_57_3_a3
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T Characterization of simple symplectic groups of degree~4 over locally finite fields in the class of periodic groups
%J Algebra i logika
%D 2018
%P 306-320
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/
%G ru
%F AL_2018_57_3_a3
D. V. Lytkina; V. D. Mazurov. Characterization of simple symplectic groups of degree~4 over locally finite fields in the class of periodic groups. Algebra i logika, Tome 57 (2018) no. 3, pp. 306-320. http://geodesic.mathdoc.fr/item/AL_2018_57_3_a3/

[1] D. V. Lytkina, V. D. Mazurov, “Kharakterizatsiya prostykh simplekticheskikh grupp razmernosti 4 nad lokalno konechnymi polyami kharakteristiki 2 v klasse periodicheskikh grupp”, Sib. matem. zh., 58:5 (2017), 1098–1109 | MR | Zbl

[2] M. Suzuki, Group Theory, v. II, Grundlehren Mathem. Wiss., 248, Springer-Verlag, New York etc., 1986 | DOI | MR | Zbl

[3] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the lowdimensional finite classical groups, London Math. Soc. Lecture Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013 | MR

[4] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[5] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[6] A. G. Rubashkin, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh $L_2(p^n)$”, Sib. matem. zh., 46:6 (2005), 1388–1392 | MR | Zbl

[7] B. Huppert, Endliche Gruppen, Nachdr. d. 1. Aufl., v. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin a.o., 1979 | MR | Zbl

[8] B. Hartley, G. Shute, “Monomorphisms and direct limits of finite groups of Lie type”, Q. J. Math. Oxf. II Ser., 35 (1984), 49–71 | DOI | MR | Zbl

[9] B. Li, D. V. Lytkina, “O silovskikh $2$-podgruppakh periodicheskikh grupp, nasyschennykh konechnymi prostymi gruppami”, Sib. matem. zh., 57:6 (2016), 1313–1319 | MR | Zbl

[10] S. N. Chernikov, “K teorii beskonechnykh spetsialnykh grupp”, Matem. sb., 7(49):3 (1940), 539–548 | MR | Zbl

[11] D. V. Lytkina, L. R. Tukhvatullina, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. matem. zh., 49:2 (2008), 394–399 | MR | Zbl