Edge-symmetric distance-regular coverings of complete graphs: the almost simple case
Algebra i logika, Tome 57 (2018) no. 2, pp. 214-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the classification of edge-symmetric distance-regular coverings of complete graphs with $r\not\in\{2,k,(k-1)/\mu\}$ for the case of the almost simple action of an automorphism group of a graph on a set of its antipodal classes; here $r$ is the order of an antipodal class.
Keywords: edge-symmetric graph, distance-regular graph, complete graph, covering
Mots-clés : antipodal class.
@article{AL_2018_57_2_a4,
     author = {A. A. Makhnev and D. V. Paduchikh and L. Yu. Tsiovkina},
     title = {Edge-symmetric distance-regular coverings of complete graphs: the almost simple case},
     journal = {Algebra i logika},
     pages = {214--231},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_2_a4/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
AU  - L. Yu. Tsiovkina
TI  - Edge-symmetric distance-regular coverings of complete graphs: the almost simple case
JO  - Algebra i logika
PY  - 2018
SP  - 214
EP  - 231
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_2_a4/
LA  - ru
ID  - AL_2018_57_2_a4
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%A L. Yu. Tsiovkina
%T Edge-symmetric distance-regular coverings of complete graphs: the almost simple case
%J Algebra i logika
%D 2018
%P 214-231
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_2_a4/
%G ru
%F AL_2018_57_2_a4
A. A. Makhnev; D. V. Paduchikh; L. Yu. Tsiovkina. Edge-symmetric distance-regular coverings of complete graphs: the almost simple case. Algebra i logika, Tome 57 (2018) no. 2, pp. 214-231. http://geodesic.mathdoc.fr/item/AL_2018_57_2_a4/

[1] A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Reberno simmetrichnye distantsionno regulyarnye nakrytiya klik s $\lambda=\mu$”, Trudy IMM UrO RAN, 19, no. 2, 2013, 237–246 | MR

[2] L. Yu. Tsiovkina, “Two new infinite families of arc-transitive antipodal distanceregular graphs of diameter three with $\lambda=\mu$ related to groups $Sz(q)$ and $^2G_2(q)$”, J. Algebr. Comb., 41:4 (2015), 1079–1087 | DOI | MR | Zbl

[3] L. Yu. Tsiovkina, “Arc-transitive antipodal distance-regular covers of complete graphs related to $SU_3(q)$”, Discrete Math., 340:2 (2017), 63–71 | DOI | MR | Zbl

[4] A. A. Makhnev, D. V. Paduchikh, L. Yu. Tsiovkina, “Reberno simmetrichnye distantsionno regulyarnye nakrytiya klik: affinnyi sluchai”, Sib. matem. zh., 54:6 (2013), 1353–1367 | MR | Zbl

[5] L. Yu. Tsiovkina, “Ob affinnykh distantsionno regulyarnykh nakrytiyakh polnykh grafov”, Sib. elektron. matem. izv., 12 (2015), 998–1005 http://semr.math.nsc.ru/v12/p998-1005.pdf | MR | Zbl

[6] C. D. Godsil, R. A. Liebler, C. E. Praeger, “Antipodal distance transitive covers of complete graphs”, Eur. J. Comb., 19:4 (1998), 455–478 | DOI | MR | Zbl

[7] C. D. Godsil, “Krein covers of complete graphs”, Australas. J. Comb., 6 (1992), 245–255 | MR | Zbl

[8] A. L. Gavrilyuk, A. A. Makhnev, “Geodezicheskie grafy s nekotorymi usloviyami odnorodnosti”, Dokl. RAN, 422:5 (2008), 589–591 | MR | Zbl

[9] V. D. Mazurov, “Minimalnye podstanovochnye predstavleniya konechnykh prostykh klassicheskikh grupp. Spetsialnye lineinye, simplekticheskie i unitarnye gruppy”, Algebra i logika, 32:3 (1993), 267–287 | MR | Zbl

[10] V. D. Mazurov, “Minimalnoe podstanovochnoe predstavlenie prostoi gruppy Tompsona”, Algebra i logika, 27:5 (1988), 562–580 | MR | Zbl

[11] A. V. Vasilev, “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp skruchennogo tipa”, Algebra i logika, 37:1 (1998), 17–35 | MR | Zbl

[12] A. V. Bacilev, V. D. Mazurov, “Minimalnye podstanovochnye predstavleniya konechnykh prostykh ortogonalnykh grupp”, Algebra i logika, 33:6 (1994), 603–627 | MR

[13] Venbin Go, A. A. Makhnev, D. V. Paduchikh, “O pochti distantsionno tranzitivnykh antipodalnykh grafakh”, Dokl. RAN, 452:6 (2013), 599–603 | DOI

[14] The GAP Group, GAP – Groups, Algorithms, Programming – A System for Computational Discrete Algebra, Vers. 4.8.7, , 2017 http://www.gap-system.org

[15] P. J. Cameron, “Covers of graphs and EGQs”, Discrete Math., 97:1–3 (1991), 83–92 | DOI | MR | Zbl