Finite almost simple groups whose Gruenberg--Kegel graphs coincide with Gruenberg--Kegel graphs of solvable groups
Algebra i logika, Tome 57 (2018) no. 2, pp. 175-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Gruenberg–Kegel graph of a finite almost simple group is equal to the Gruenberg–Kegel graph of some finite solvable group iff it does not contain $3$-cocliques. Furthermore, we obtain a description of finite almost simple groups whose Gruenberg–Kegel graphs contain no $3$-cocliques.
Keywords: finite group, almost simple group, Gruenberg–Kegel graph (prime graph).
Mots-clés : solvable group
@article{AL_2018_57_2_a2,
     author = {I. B. Gorshkov and N. V. Maslova},
     title = {Finite almost simple groups whose {Gruenberg--Kegel} graphs coincide with {Gruenberg--Kegel} graphs of solvable groups},
     journal = {Algebra i logika},
     pages = {175--196},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_2_a2/}
}
TY  - JOUR
AU  - I. B. Gorshkov
AU  - N. V. Maslova
TI  - Finite almost simple groups whose Gruenberg--Kegel graphs coincide with Gruenberg--Kegel graphs of solvable groups
JO  - Algebra i logika
PY  - 2018
SP  - 175
EP  - 196
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_2_a2/
LA  - ru
ID  - AL_2018_57_2_a2
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%A N. V. Maslova
%T Finite almost simple groups whose Gruenberg--Kegel graphs coincide with Gruenberg--Kegel graphs of solvable groups
%J Algebra i logika
%D 2018
%P 175-196
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_2_a2/
%G ru
%F AL_2018_57_2_a2
I. B. Gorshkov; N. V. Maslova. Finite almost simple groups whose Gruenberg--Kegel graphs coincide with Gruenberg--Kegel graphs of solvable groups. Algebra i logika, Tome 57 (2018) no. 2, pp. 175-196. http://geodesic.mathdoc.fr/item/AL_2018_57_2_a2/

[1] M. C. Lucido, “The diameter of the prime graph of a finite group”, J. Group Theory, 2:2 (1999), 157–172 | DOI | MR | Zbl

[2] G. Higman, “Finite groups in which every element has prime power order”, J. London Math. Soc., 32 (1957), 335–342 | DOI | MR | Zbl

[3] D. Gorenstein, Finite groups, Harper's Ser. Modern Math., Harper Row Publ., New York a.o., 1968 | MR | Zbl

[4] A. Gruber, T. M. Keller, M. L. Lewis, K. Naughton, B. Strasser, “A characterization of the prime graphs of solvable groups”, J. Algebra, 442 (2015), 397–422 | DOI | MR | Zbl

[5] M. R. Zinoveva, V. D. Mazurov, “O konechnykh gruppakh s nesvyaznym grafom prostykh chisel”, Tr. IMM UrO RAN, 18, no. 3, 2012, 99–105

[6] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[7] A. V. Vasilev, E. P. Vdovin, “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[8] F. Harary, Graph theory, Addison-Wesley Ser. Math., Addison-Wesley Publ. Co., Reading, Mass. etc., 1969 | MR | Zbl

[9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[10] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Part I. Chapter A: Almost simple $K$-groups, Math. Surv. Monogr., 40, no. 3, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[11] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[12] Gérono, “Note sur la résolution en nombres entiers et positifs de l'équation $x^m=y^n+1$”, Nouv. Ann. (2), 9 (1870), 469–471

[13] N. V. Maslova, “O sovpadenii grafov Gryunberga-Kegelya konechnoi prostoi gruppy i eë sobstvennoi podgruppy”, Trudy IMM UrO RAN, 20, no. 1, 2014, 156–168 | MR

[14] A. S. Kondratev, V. D. Mazurov, “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. matem. zh., 41:2 (2000), 359–369 | MR | Zbl

[15] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[16] A. A. Buturlakin, “Spektry konechnykh lineinykh i unitarnykh grupp”, Algebra i logika, 47:2 (2008), 157–173 | MR | Zbl