Separability of Schur rings over Abelian $p$-groups
Algebra i logika, Tome 57 (2018) no. 1, pp. 73-101

Voir la notice de l'article provenant de la source Math-Net.Ru

A Schur ring (an $S$-ring) is said to be separable if each of its algebraic isomorphisms is induced by an isomorphism. Let $C_n$ be the cyclic group of order $n$. It is proved that all $S$-rings over groups $D=C_p\times C_{p^k}$, where $p\in\{2,3\}$ and $k\ge1$, are separable with respect to a class of $S$-rings over Abelian groups. From this statement, we deduce that a given Cayley graph over $D$ and a given Cayley graph over an arbitrary Abelian group can be checked for isomorphism in polynomial time with respect to $|D|$.
Keywords: Cayley graphs, Cayley graph isomorphism problem, Cayley schemes, Schur rings, permutation groups.
@article{AL_2018_57_1_a4,
     author = {G. K. Ryabov},
     title = {Separability of {Schur} rings over {Abelian} $p$-groups},
     journal = {Algebra i logika},
     pages = {73--101},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - Separability of Schur rings over Abelian $p$-groups
JO  - Algebra i logika
PY  - 2018
SP  - 73
EP  - 101
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/
LA  - ru
ID  - AL_2018_57_1_a4
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T Separability of Schur rings over Abelian $p$-groups
%J Algebra i logika
%D 2018
%P 73-101
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/
%G ru
%F AL_2018_57_1_a4
G. K. Ryabov. Separability of Schur rings over Abelian $p$-groups. Algebra i logika, Tome 57 (2018) no. 1, pp. 73-101. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/