Separability of Schur rings over Abelian $p$-groups
Algebra i logika, Tome 57 (2018) no. 1, pp. 73-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Schur ring (an $S$-ring) is said to be separable if each of its algebraic isomorphisms is induced by an isomorphism. Let $C_n$ be the cyclic group of order $n$. It is proved that all $S$-rings over groups $D=C_p\times C_{p^k}$, where $p\in\{2,3\}$ and $k\ge1$, are separable with respect to a class of $S$-rings over Abelian groups. From this statement, we deduce that a given Cayley graph over $D$ and a given Cayley graph over an arbitrary Abelian group can be checked for isomorphism in polynomial time with respect to $|D|$.
Keywords: Cayley graphs, Cayley graph isomorphism problem, Cayley schemes, Schur rings, permutation groups.
@article{AL_2018_57_1_a4,
     author = {G. K. Ryabov},
     title = {Separability of {Schur} rings over {Abelian} $p$-groups},
     journal = {Algebra i logika},
     pages = {73--101},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - Separability of Schur rings over Abelian $p$-groups
JO  - Algebra i logika
PY  - 2018
SP  - 73
EP  - 101
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/
LA  - ru
ID  - AL_2018_57_1_a4
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T Separability of Schur rings over Abelian $p$-groups
%J Algebra i logika
%D 2018
%P 73-101
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/
%G ru
%F AL_2018_57_1_a4
G. K. Ryabov. Separability of Schur rings over Abelian $p$-groups. Algebra i logika, Tome 57 (2018) no. 1, pp. 73-101. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a4/

[1] I. Schur, “Zur Theorie der einfach transitiven Permutationsgruppen”, Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl., 18/20 (1933), 598–623 | Zbl

[2] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[3] S. Evdokimov, I. Ponomarenko, “On the separability problem for circulant Srings”, Algebra i analiz, 28:1 (2016), 32–51 | MR

[4] S. A. Evdokimov, I. N. Ponomarenko, “Ob odnom semeistve kolets Shura nad konechnoi tsiklicheskoi gruppoi”, Algebra i analiz, 13:3 (2001), 139–154 | MR | Zbl

[5] Ya. Golfand, M. Klin, “Amorfnye kletochnye koltsa. I”, Issledovaniya po algebraicheskoi teorii kombinatornykh ob'ektov, Trudy seminara, AN SSSR, VNIISI, Moskva, 1985, 32–38 | MR

[6] M. Muzychuk, I. Ponomarenko, “O 2-gruppakh Shura”, Voprosy teorii predstavlenii algebr i grupp. 28, Zap. nauchn. sem. POMI, 435, POMI, SPb., 2015, 113–162 | MR

[7] G. Ryabov, “On Schur $p$-groups of odd order”, J. Algebra Appl., 16:3 (2017), Article ID 1750045, 29 pp. | DOI | MR | Zbl

[8] S. Evdokimov, I. Ponomarenko, “Permutation group approach to association schemes”, Eur. J. Comb., 30:6 (2009), 1456–1476 | DOI | MR | Zbl

[9] B. Weisfeiler (ed.), On construction and identification of graphs, With contributions by A. Lehman, G. M. Adelson-Velsky, V. Arlazarov, I. Faragev, A. Uskov, I. Zuev, M. Rosenfeld and B. Weisfeiler, Lecture Notes in Math., 558, Springer-Verlag, Berlin etc., 1976 | DOI | MR | Zbl

[10] B. Yu. Veisfeiler, A. A. Leman, “Privedenie grafa k kanonicheskomu vidu i voznikayuschaya pri etom algebra”, NTI, ser. 2, 1968, no. 9, 12–16

[11] S. A. Evdokimov, I. N. Ponomarenko, “Raspoznavanie i proverka izomorfizma tsirkulyantnykh grafov za polinomialnoe vremya”, Algebra i analiz, 15:6 (2003), 1–34 | MR | Zbl

[12] M. Muzychuk, “A solution of the isomorphism problem for circulant graphs”, Proc. Lond. Math. Soc. III Ser., 88:1 (2004), 1–41 | DOI | MR | Zbl

[13] M. Muzychuk, I. Ponomarenko, “Schur rings”, Eur. J. Comb., 30:6 (2009), 1526–1539 | DOI | MR | Zbl

[14] S. Evdokimov, I. Ponomarenko, “Coset closure of a circulant $S$-ring and schurity problem”, J. Algebra Appl., 15:4 (2016), Article ID 1650068, 49 pp. | DOI | MR | Zbl

[15] S. A. Evdokimov, Shurovost i otdelimost assotsiativnykh skhem, Diss. dokt. fiz.-mat. nauk, SPbGU, SPb., 2004

[16] M. Muzychuk, I. Ponomarenko, “On quasi-thin association schemes”, J. Algebra, 351:1 (2012), 467–489 | DOI | MR | Zbl

[17] S. A. Evdokimov, I. N. Ponomarenko, “Shurovost $S$-kolets nad tsiklicheskoi gruppoi i obobschennoe spletenie grupp perestanovok”, Algebra i analiz, 24:3 (2012), 84–127 | MR | Zbl

[18] S. A. Evdokimov, I. N. Ponomarenko, “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsaShura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55 | MR | Zbl

[19] M. Klin, C. Pech, S. Reichard, COCO2P – a GAP package, Ver. 0.14, , 07.02.2015 http://www.math.tu-dresden.de