Locally finite Suzuki–Higman $2$-groups
Algebra i logika, Tome 56 (2017) no. 6, pp. 721-748
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following: THEOREM. Let $U$ be a locally finite Suzuki–Higman $2$-group with respect to an automorphism group $H$. Then $U$ and $H$ are representable as the respective unions of ascending chains of finite subgroups \begin{align*} U_1\dots\dots,\\ H_1\dots\dots, \end{align*} in which case every subgroup $U_n$ is a Suzuki $2$-group with respect to $H_n$.
Keywords:
locally finite Suzuki–Higman $2$-group, Suzuki $2$-group, ascending chain of finite subgroups.
Mots-clés : automorphism group
Mots-clés : automorphism group
@article{AL_2017_56_6_a5,
author = {N. M. Suchkov},
title = {Locally finite {Suzuki{\textendash}Higman} $2$-groups},
journal = {Algebra i logika},
pages = {721--748},
publisher = {mathdoc},
volume = {56},
number = {6},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/}
}
N. M. Suchkov. Locally finite Suzuki–Higman $2$-groups. Algebra i logika, Tome 56 (2017) no. 6, pp. 721-748. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/