Locally finite Suzuki--Higman $2$-groups
Algebra i logika, Tome 56 (2017) no. 6, pp. 721-748.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following: THEOREM. Let $U$ be a locally finite Suzuki–Higman $2$-group with respect to an automorphism group $H$. Then $U$ and $H$ are representable as the respective unions of ascending chains of finite subgroups \begin{align*} U_1\dots\dots,\\ H_1\dots\dots, \end{align*} in which case every subgroup $U_n$ is a Suzuki $2$-group with respect to $H_n$.
Keywords: locally finite Suzuki–Higman $2$-group, Suzuki $2$-group, ascending chain of finite subgroups.
Mots-clés : automorphism group
@article{AL_2017_56_6_a5,
     author = {N. M. Suchkov},
     title = {Locally finite {Suzuki--Higman} $2$-groups},
     journal = {Algebra i logika},
     pages = {721--748},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/}
}
TY  - JOUR
AU  - N. M. Suchkov
TI  - Locally finite Suzuki--Higman $2$-groups
JO  - Algebra i logika
PY  - 2017
SP  - 721
EP  - 748
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/
LA  - ru
ID  - AL_2017_56_6_a5
ER  - 
%0 Journal Article
%A N. M. Suchkov
%T Locally finite Suzuki--Higman $2$-groups
%J Algebra i logika
%D 2017
%P 721-748
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/
%G ru
%F AL_2017_56_6_a5
N. M. Suchkov. Locally finite Suzuki--Higman $2$-groups. Algebra i logika, Tome 56 (2017) no. 6, pp. 721-748. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/

[1] M. Suzuki, “On a class of doubly transitive groups”, Ann. Math. (2), 75:1 (1962), 105–145 | DOI | MR

[2] M. Suzuki, “On a class of doubly transitive groups. II”, Ann. Math. (2), 79:3 (1964), 514–589 | DOI | MR

[3] G. Higman, “Suzuki 2-groups”, Ill. J. Math., 7 (1963), 79–96 | MR

[4] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 18-e izd., In-t matem. SO RAN, Novosibirsk, 2014 http://www.math.nsc.ru/~alglog/18kt.pdf

[5] A. I. Sozutov, N. M. Suchkov, N. G. Suchkova, Beskonechnye gruppy s involyutsiyami, Sib. federal. un-t, Krasnoyarsk, 2011

[6] G. Higman, “Groups and rings which have automorphisms without non-trivial fixed elements”, J. Lond. Math. Soc., 32 (1957), 321–334 | DOI | MR

[7] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR

[8] D. Gorenstein, Finite groups, Harper's Ser. Modern Math., Harper Row Publ., New York a.o., 1968 | MR

[9] N. M. Suchkov, “Avtomorfno faktorizuemye gruppy”, Algebra i logika, 18:4 (1979), 481–487 | MR