Locally finite Suzuki–Higman $2$-groups
Algebra i logika, Tome 56 (2017) no. 6, pp. 721-748

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following: THEOREM. Let $U$ be a locally finite Suzuki–Higman $2$-group with respect to an automorphism group $H$. Then $U$ and $H$ are representable as the respective unions of ascending chains of finite subgroups \begin{align*} U_1\dots\dots,\\ H_1\dots\dots, \end{align*} in which case every subgroup $U_n$ is a Suzuki $2$-group with respect to $H_n$.
Keywords: locally finite Suzuki–Higman $2$-group, Suzuki $2$-group, ascending chain of finite subgroups.
Mots-clés : automorphism group
@article{AL_2017_56_6_a5,
     author = {N. M. Suchkov},
     title = {Locally finite {Suzuki{\textendash}Higman} $2$-groups},
     journal = {Algebra i logika},
     pages = {721--748},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/}
}
TY  - JOUR
AU  - N. M. Suchkov
TI  - Locally finite Suzuki–Higman $2$-groups
JO  - Algebra i logika
PY  - 2017
SP  - 721
EP  - 748
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/
LA  - ru
ID  - AL_2017_56_6_a5
ER  - 
%0 Journal Article
%A N. M. Suchkov
%T Locally finite Suzuki–Higman $2$-groups
%J Algebra i logika
%D 2017
%P 721-748
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/
%G ru
%F AL_2017_56_6_a5
N. M. Suchkov. Locally finite Suzuki–Higman $2$-groups. Algebra i logika, Tome 56 (2017) no. 6, pp. 721-748. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a5/