Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$
Algebra i logika, Tome 56 (2017) no. 6, pp. 671-681

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a distance regular graph with intersection array $\{35,32,1;1,4,35\}$ and let $G=\operatorname{Aut}(\Gamma)$ act transitively on the set of vertices of the graph $\Gamma$. It is shown that $G$ is a $\{2,3\}$-group.
Keywords: distance-regular graph, itersection array
Mots-clés : automorphism group.
@article{AL_2017_56_6_a1,
     author = {V. V. Bitkina and A. A. Makhnev},
     title = {Automorphism group of a~distanceregular graph with intersection array $\{35,32,1;1,4,35\}$},
     journal = {Algebra i logika},
     pages = {671--681},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a1/}
}
TY  - JOUR
AU  - V. V. Bitkina
AU  - A. A. Makhnev
TI  - Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$
JO  - Algebra i logika
PY  - 2017
SP  - 671
EP  - 681
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_6_a1/
LA  - ru
ID  - AL_2017_56_6_a1
ER  - 
%0 Journal Article
%A V. V. Bitkina
%A A. A. Makhnev
%T Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$
%J Algebra i logika
%D 2017
%P 671-681
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_6_a1/
%G ru
%F AL_2017_56_6_a1
V. V. Bitkina; A. A. Makhnev. Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$. Algebra i logika, Tome 56 (2017) no. 6, pp. 671-681. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a1/