Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation
Algebra i logika, Tome 56 (2017) no. 5, pp. 639-641.

Voir la notice de l'article provenant de la source Math-Net.Ru

Presented by V. D. Mazurov, a member of the Editorial Board.
@article{AL_2017_56_5_a7,
     author = {P. S. Kolesnikov and R. A. Kozlov},
     title = {Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation},
     journal = {Algebra i logika},
     pages = {639--641},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a7/}
}
TY  - JOUR
AU  - P. S. Kolesnikov
AU  - R. A. Kozlov
TI  - Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation
JO  - Algebra i logika
PY  - 2017
SP  - 639
EP  - 641
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a7/
LA  - ru
ID  - AL_2017_56_5_a7
ER  - 
%0 Journal Article
%A P. S. Kolesnikov
%A R. A. Kozlov
%T Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation
%J Algebra i logika
%D 2017
%P 639-641
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a7/
%G ru
%F AL_2017_56_5_a7
P. S. Kolesnikov; R. A. Kozlov. Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation. Algebra i logika, Tome 56 (2017) no. 5, pp. 639-641. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a7/

[1] V. G. Kats, Verteksnye algebry dlya nachinayuschikh, MTsNMO, M., 2005

[2] P. Kolesnikov, “On finite representations of conformal algebras”, J. Algebra, 331:1 (2011), 169–193 | DOI | MR | Zbl

[3] P. Kolesnikov, “The Ado theorem for finite Lie conformal algebras with Levi decomposition”, J. Algebra Appl., 15:7 (2016), Article ID 1650130, 13 pp. | DOI | MR | Zbl

[4] P. S. Kolesnikov, “Associative conformal algebras with finite faithful representation”, Adv. Math., 202:2 (2006), 602–637 | DOI | MR | Zbl

[5] I. A. Dolguntseva, “Kogomologii Khokhshilda dlya assotsiativnykh konformnykh algebr”, Algebra i logika, 46:6 (2007), 688–706 | MR | Zbl

[6] I. A. Dolguntseva, “Trivialnost vtoroi gruppy kogomologii konformnykh algebr $\mathrm{Cend}_n$ i $\mathrm{Cur}_n$”, Algebra i analiz, 21:1 (2009), 74–89 | MR | Zbl

[7] E. I. Zelmanov, “On the structure of conformal algebras”, Combinatorial and computational algebra, Int. conf. on comb. and comput. algebra (Hong Kong, China, May 24–29, 1999), Contemp. Math., 264, eds. Kai Yuen Chan et al., Am. Math. Soc., Providence, RI, 2000, 139–153 | DOI | MR | Zbl