Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2017_56_5_a7, author = {P. S. Kolesnikov and R. A. Kozlov}, title = {Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation}, journal = {Algebra i logika}, pages = {639--641}, publisher = {mathdoc}, volume = {56}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a7/} }
TY - JOUR AU - P. S. Kolesnikov AU - R. A. Kozlov TI - Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation JO - Algebra i logika PY - 2017 SP - 639 EP - 641 VL - 56 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a7/ LA - ru ID - AL_2017_56_5_a7 ER -
P. S. Kolesnikov; R. A. Kozlov. Molien--Wedderburn theorem for associative conformal algebras with finite faithful representation. Algebra i logika, Tome 56 (2017) no. 5, pp. 639-641. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a7/
[1] V. G. Kats, Verteksnye algebry dlya nachinayuschikh, MTsNMO, M., 2005
[2] P. Kolesnikov, “On finite representations of conformal algebras”, J. Algebra, 331:1 (2011), 169–193 | DOI | MR | Zbl
[3] P. Kolesnikov, “The Ado theorem for finite Lie conformal algebras with Levi decomposition”, J. Algebra Appl., 15:7 (2016), Article ID 1650130, 13 pp. | DOI | MR | Zbl
[4] P. S. Kolesnikov, “Associative conformal algebras with finite faithful representation”, Adv. Math., 202:2 (2006), 602–637 | DOI | MR | Zbl
[5] I. A. Dolguntseva, “Kogomologii Khokhshilda dlya assotsiativnykh konformnykh algebr”, Algebra i logika, 46:6 (2007), 688–706 | MR | Zbl
[6] I. A. Dolguntseva, “Trivialnost vtoroi gruppy kogomologii konformnykh algebr $\mathrm{Cend}_n$ i $\mathrm{Cur}_n$”, Algebra i analiz, 21:1 (2009), 74–89 | MR | Zbl
[7] E. I. Zelmanov, “On the structure of conformal algebras”, Combinatorial and computational algebra, Int. conf. on comb. and comput. algebra (Hong Kong, China, May 24–29, 1999), Contemp. Math., 264, eds. Kai Yuen Chan et al., Am. Math. Soc., Providence, RI, 2000, 139–153 | DOI | MR | Zbl