Decompositions in complete lattices~III. Unique irredundant decompositions and convex geometries
Algebra i logika, Tome 56 (2017) no. 5, pp. 613-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a characterization of complete strongly dually atomic lattices having unique irredundant decompositions which are also canonical. It is shown that all known characterizations of lattices with unique irredundant decompositions are a consequence of this result. In addition, upper continuous closure lattices of convex geometries with (unique) irredundant decompositions are characterized.
Keywords: closure space, convex geometry, irredundant decomposition, join-semidistributive lattice, locally distributive lattice, lower continuous lattice, semimodular lattice, strongly atomic lattice, upper continuous lattice, weakly atomic lattice.
Mots-clés : minimal decomposition
@article{AL_2017_56_5_a5,
     author = {M. V. Schwidefsky},
     title = {Decompositions in complete {lattices~III.} {Unique} irredundant decompositions and convex geometries},
     journal = {Algebra i logika},
     pages = {613--635},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a5/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Decompositions in complete lattices~III. Unique irredundant decompositions and convex geometries
JO  - Algebra i logika
PY  - 2017
SP  - 613
EP  - 635
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a5/
LA  - ru
ID  - AL_2017_56_5_a5
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Decompositions in complete lattices~III. Unique irredundant decompositions and convex geometries
%J Algebra i logika
%D 2017
%P 613-635
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a5/
%G ru
%F AL_2017_56_5_a5
M. V. Schwidefsky. Decompositions in complete lattices~III. Unique irredundant decompositions and convex geometries. Algebra i logika, Tome 56 (2017) no. 5, pp. 613-635. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a5/

[1] M. V. Semenova, “Razlozheniya v polnykh reshetkakh”, Algebra i logika, 40:6 (2001), 685–697 | MR | Zbl

[2] M. V. Shvidefski, “Razlozheniya v polnykh reshëtkakh. II. Nesokratimye razlozheniya so svoistvom zameny”, Algebra i logika, 56:3 (2017), 354–366

[3] R. P. Dilworth, “Lattices with unique irreducible decompositions”, Ann. Math. II Ser., 41:4 (1940), 771–776 | DOI | MR

[4] R. P. Dilworth, P. Crawley, “Decomposition theory for lattices without chain conditions”, Trans. Am. Math. Soc., 96:1 (1960), 1–22 | DOI | MR | Zbl

[5] P. Crawley, “Decomposition theory for nonsemimodular lattices”, Trans. Am. Math. Soc., 99:1 (1961), 246–254 | DOI | MR

[6] P. Crawley, R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, NJ, 1973 | Zbl

[7] P. H. Edelman, R. E. Jamison, “The theory of convex geometries”, Geom. Dedicata, 19:3 (1985), 247–270 | DOI | MR | Zbl

[8] P. H. Edelman, “Meet-distributive lattices and the anti-exchange closure”, Algebra Univers., 10:3 (1980), 290–299 | DOI | MR | Zbl

[9] M. Erné, “On the existence of decompositions in lattices”, Algebra Univers., 16:3 (1983), 338–343 | DOI | MR | Zbl

[10] B. Monjardet, “The consequence of Dilworth's work on lattices with unique irreducible decompositions”, The Dilworth theorems, Selected papers of Robert P. Dilworth, Contemp. Mathematicians, eds. K. P. Bogart, R. Freese, J. P. S. Kung, Birkhäuser, Boston, MA, 1990, 192–199 | MR

[11] V. A. Gorbunov, “Kanonicheskie razlozheniya v polnykh reshetkakh”, Algebra i logika, 17:5 (1978), 495–511 | MR

[12] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[13] A. Walendziak, “Join decompositions in lower continuous lattices”, Stud. Sci. Math. Hung., 28:1/2 (1993), 131–134 | MR | Zbl

[14] B. Korte, L. Lovász, R. Schrader, Greedoids, Algorithms Combin., 4, Springer-Verlag, Berlin, 1991 | MR | Zbl

[15] M. V. Semenova, “Reshetki s edinstvennymi nesokratimymi razlozheniyami”, Algebra i logika, 39:1 (2000), 93–103 | MR | Zbl

[16] M. V. Semenova, K teorii poludistributivnykh reshetok, Diss. kand. fiz.-mat. nauk, Novosibirskii gos. un-t, Novosibirsk, 2000

[17] K. Adaricheva, J. B. Nation, “A class of infinite convex geometries”, Electron. J. Combin., 23:1 (2016), Pap. # P1.56 ; arXiv: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p561501.04174 | MR

[18] K. V. Adaricheva, V. A. Gorbunov, V. I. Tumanov, “Join-semidistributive lattices and convex geometries”, Adv. Math., 173:1 (2003), 1–49 | DOI | MR | Zbl