Hyperidentities of quasilinear clones containing creative functions
Algebra i logika, Tome 56 (2017) no. 5, pp. 582-592

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the possibility for separating by hyperidentities clones of quasilinear functions defined on the set $\{0,1,2\}$ with values in the set $\{0,1\}$. It is proved that every creative clone of this kind can be separated by a hyperidentity from any noncreative clone comparable with it.
Keywords: hyperidentity, clone, clone identity, preiterative algebra, separating formula, quasilinear function.
@article{AL_2017_56_5_a3,
     author = {I. A. Mal'tsev},
     title = {Hyperidentities of quasilinear clones containing creative functions},
     journal = {Algebra i logika},
     pages = {582--592},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a3/}
}
TY  - JOUR
AU  - I. A. Mal'tsev
TI  - Hyperidentities of quasilinear clones containing creative functions
JO  - Algebra i logika
PY  - 2017
SP  - 582
EP  - 592
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a3/
LA  - ru
ID  - AL_2017_56_5_a3
ER  - 
%0 Journal Article
%A I. A. Mal'tsev
%T Hyperidentities of quasilinear clones containing creative functions
%J Algebra i logika
%D 2017
%P 582-592
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a3/
%G ru
%F AL_2017_56_5_a3
I. A. Mal'tsev. Hyperidentities of quasilinear clones containing creative functions. Algebra i logika, Tome 56 (2017) no. 5, pp. 582-592. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a3/