Solimit points and $u$-extensions
Algebra i logika, Tome 56 (2017) no. 4, pp. 443-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a characterization of $u$-extensions of topological $T_0$-spaces and also of sober spaces using a new concept of a solimit point. It is shown that the sobrification of an arbitrary $T_0$-space coincides with its greatest $u$-extension.
Mots-clés : solimit point, sobrification.
Keywords: topological $T_0$-space, sober space
@article{AL_2017_56_4_a3,
     author = {Yu. L. Ershov},
     title = {Solimit points and $u$-extensions},
     journal = {Algebra i logika},
     pages = {443--452},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a3/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Solimit points and $u$-extensions
JO  - Algebra i logika
PY  - 2017
SP  - 443
EP  - 452
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_4_a3/
LA  - ru
ID  - AL_2017_56_4_a3
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Solimit points and $u$-extensions
%J Algebra i logika
%D 2017
%P 443-452
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_4_a3/
%G ru
%F AL_2017_56_4_a3
Yu. L. Ershov. Solimit points and $u$-extensions. Algebra i logika, Tome 56 (2017) no. 4, pp. 443-452. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a3/

[1] Yu. L. Ershov, “On the classification of (effective) $\varphi$-spaces”, Ann. Pure Appl. Logic, 159:3 (2009), 285–291 | DOI | MR | Zbl

[2] Yu. L. Ershov, “O suschestvennykh rasshireniyakh $T_0$-prostranstv. II”, Algebra i logika, 55:1 (2016), 3–13 | DOI | MR | Zbl

[3] Yu. L. Ershov, “O suschestvennykh rasshireniyakh $T_0$-prostranstv”, Dokl. RAN, 368:3 (1999), 299–302 | MR | Zbl

[4] Yu. L. Ershov, “Spektry kolets i reshetok”, Sib. matem. zh., 46:2 (2005), 361–373 | MR | Zbl