Algebraic geometry over algebraic structures.~VI. Geometric equivalence
Algebra i logika, Tome 56 (2017) no. 4, pp. 421-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is one in our series of works on algebraic geometry over arbitrary algebraic structures, which focuses on the concept of geometrical equivalence. This concept signifies that for two geometrically equivalent algebraic structures $\mathcal A$ and $\mathcal B$ of a language $\mathrm L$, the classification problems for algebraic sets over $\mathcal A$ and $\mathcal B$ are equivalent. We establish a connection between geometrical equivalence and quasi-equational equivalence.
Keywords: universal algebraic geometry, geometrical equivalence, prevariety, quasivariety.
Mots-clés : algebraic structure
@article{AL_2017_56_4_a2,
     author = {E. Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
     title = {Algebraic geometry over algebraic {structures.~VI.} {Geometric} equivalence},
     journal = {Algebra i logika},
     pages = {421--442},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Algebraic geometry over algebraic structures.~VI. Geometric equivalence
JO  - Algebra i logika
PY  - 2017
SP  - 421
EP  - 442
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/
LA  - ru
ID  - AL_2017_56_4_a2
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Algebraic geometry over algebraic structures.~VI. Geometric equivalence
%J Algebra i logika
%D 2017
%P 421-442
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/
%G ru
%F AL_2017_56_4_a2
E. Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic geometry over algebraic structures.~VI. Geometric equivalence. Algebra i logika, Tome 56 (2017) no. 4, pp. 421-442. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/

[1] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione, Papers of the conf. (Fairfield, USA, March 2007 in honour of A. Gaglione's 60th birthday), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl

[2] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. i prikl. matem., 17:1 (2011/2012), 65–106 | MR

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. III: Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl

[4] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. IV. Ekvatsionalnye oblasti i ko-oblasti”, Algebra i logika, 49:6 (2010), 715–756 | MR

[5] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. V. Sluchai proizvolnoi signatury”, Algebra i logika, 51:1 (2012), 41–60 | MR | Zbl

[6] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universalnaya algebraicheskaya geometriya”, Dokl. AN, 439:6 (2011), 730–732 | MR | Zbl

[7] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Razmernost v universalnoi algebraicheskoi geometrii”, Dokl. AN, 457:3 (2014), 265–267 | DOI | MR | Zbl

[8] B. Plotkin, “Varieties of algebras and algebraic varieties”, Isr. J. Math., 96, Pt. B (1996), 511–522 | DOI | MR | Zbl

[9] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II: Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[10] A. Berzins, “Geometrical equivalence of algebras”, Internat. J. Algebra Comput., 11:4 (2001), 447–456 | DOI | MR | Zbl

[11] R. Göbel, S. Shelah, “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Am. Math. Soc., 130:3 (2002), 673–674 | DOI | MR | Zbl

[12] G. Grätzer, H. Lakser, “A note on the implicational class generated by a class of structures”, Can. Math. Bull., 16:4 (1973), 603–605 | DOI | MR | Zbl

[13] B. Plotkin, “Algebras with the same (algebraic) geometry”, Matematicheskaya logika i algebra, Sb. statei. K 100-letiyu so dnya rozhdeniya akad. P. S. Novikova, Tr. MIAN, 242, Nauka, M., 2003, 176–207 | MR | Zbl

[14] B. I. Plotkin, “Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras”, Zap. nauchn. sem. POMI, 330, 2006, 201–222 | MR | Zbl

[15] B. I. Plotkin, Seven lectures on the universal algebraic geometry, Preprint, 2002, 87 pp., arXiv: math/0204245[math.GM]

[16] B. I. Plotkin, “Problemy algebry, inspirirovannye universalnoi algebraicheskoi geometriei”, Fundament. i prikl. matem., 10:3 (2004), 181–197 | MR | Zbl

[17] B. Plotkin, A. Tsurkov, “Action type geometrical equivalence of representations of groups”, Algebra Discrete Math., 2005, no. 4, 48–79 | MR | Zbl

[18] B. Plotkin, G. Zhitomirski, “Some logical invariants of algebras and logical relations between algebras”, Algebra i analiz, 19:5 (2007), 214–245 | MR | Zbl

[19] A. G. Myasnikov, N. S. Romanovskii, “Ob universalnykh teoriyakh zhëstkikh razreshimykh grupp”, Algebra i logika, 50:6 (2011), 802–821 | MR | Zbl

[20] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[21] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[22] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[23] N. S. Romanovskii, “Ob universalnoi teorii svobodnoi razreshimoi gruppy”, Algebra i logika, 51:3 (2012), 385–391 | MR | Zbl

[24] N. S. Romanovskii, “O neprivodimosti affinnogo prostranstva v algebraicheskoi geometrii nad gruppoi”, Algebra i logika, 52:3 (2013), 386–391 | MR | Zbl

[25] N. S. Romanovskii, “Teorema Gilberta o nulyakh (Nullstellensatz) v algebraicheskoi geometrii nad zhestkimi razreshimymi gruppami”, Izv. RAN. Ser. matem., 79:5 (2015), 201–214 | DOI | MR

[26] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[27] M. Barr, Ch. Wells, Toposes, triples and theories, Repr. Theory Appl. Categ., 12, 2005, 288 pp. | MR | Zbl

[28] A. N. Shevlyakov, “Commutative idempotent semigroups at the service of universal algebraic geometry”, Southeast Asian Bull. Math., 35:1 (2011), 111–136 | MR | Zbl