Algebraic geometry over algebraic structures. VI. Geometric equivalence
Algebra i logika, Tome 56 (2017) no. 4, pp. 421-442
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper is one in our series of works on algebraic geometry over arbitrary algebraic structures, which focuses on the concept of geometrical equivalence. This concept signifies that for two geometrically equivalent algebraic structures $\mathcal A$ and $\mathcal B$ of a language $\mathrm L$, the classification problems for algebraic sets over $\mathcal A$ and $\mathcal B$ are equivalent. We establish a connection between geometrical equivalence and quasi-equational equivalence.
Keywords:
universal algebraic geometry, geometrical equivalence, prevariety, quasivariety.
Mots-clés : algebraic structure
Mots-clés : algebraic structure
@article{AL_2017_56_4_a2,
author = {E. Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
title = {Algebraic geometry over algebraic {structures.~VI.} {Geometric} equivalence},
journal = {Algebra i logika},
pages = {421--442},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/}
}
TY - JOUR AU - E. Yu. Daniyarova AU - A. G. Myasnikov AU - V. N. Remeslennikov TI - Algebraic geometry over algebraic structures. VI. Geometric equivalence JO - Algebra i logika PY - 2017 SP - 421 EP - 442 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/ LA - ru ID - AL_2017_56_4_a2 ER -
E. Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic geometry over algebraic structures. VI. Geometric equivalence. Algebra i logika, Tome 56 (2017) no. 4, pp. 421-442. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/