Algebraic geometry over algebraic structures. VI. Geometric equivalence
Algebra i logika, Tome 56 (2017) no. 4, pp. 421-442

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is one in our series of works on algebraic geometry over arbitrary algebraic structures, which focuses on the concept of geometrical equivalence. This concept signifies that for two geometrically equivalent algebraic structures $\mathcal A$ and $\mathcal B$ of a language $\mathrm L$, the classification problems for algebraic sets over $\mathcal A$ and $\mathcal B$ are equivalent. We establish a connection between geometrical equivalence and quasi-equational equivalence.
Keywords: universal algebraic geometry, geometrical equivalence, prevariety, quasivariety.
Mots-clés : algebraic structure
@article{AL_2017_56_4_a2,
     author = {E. Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
     title = {Algebraic geometry over algebraic {structures.~VI.} {Geometric} equivalence},
     journal = {Algebra i logika},
     pages = {421--442},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Algebraic geometry over algebraic structures. VI. Geometric equivalence
JO  - Algebra i logika
PY  - 2017
SP  - 421
EP  - 442
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/
LA  - ru
ID  - AL_2017_56_4_a2
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Algebraic geometry over algebraic structures. VI. Geometric equivalence
%J Algebra i logika
%D 2017
%P 421-442
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/
%G ru
%F AL_2017_56_4_a2
E. Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic geometry over algebraic structures. VI. Geometric equivalence. Algebra i logika, Tome 56 (2017) no. 4, pp. 421-442. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a2/