Automorphism groups of diagonal $\mathbf Z_p$-forms of the Lie algebra $sl_2(\mathbf Q_p)$, $p>2$
Algebra i logika, Tome 56 (2017) no. 4, pp. 406-420
A. V. Yushchenko's paper [Sib. Mat. Zh., 43, No. 5, 1197–1207] implies that two nondiagonal forms like $S(n,d)+\mathbf Z_pA$ and $S(n,d)+\mathbf Z_pA'$ are isomorphic if the elements of $A$ and $A'$ are conjugated via the group $\mathrm{Aut}_{\mathbf Z_p}S(n,d)$. In the present paper, we settle just this question on conjugation. In other words, we describe the group $\mathrm{Aut}_{\mathbf Z_p}S(n,d)$ and clarify under which conditions two elements of $S(n,d)$ are conjugate under the action of this group on $S(n,d)$, $p>2$.
Keywords:
Lie algebra, diagonal $\mathbf Z_p$-form
Mots-clés : automorphism group.
Mots-clés : automorphism group.
@article{AL_2017_56_4_a1,
author = {A. N. Grishkov and M. N. Rasskazova},
title = {Automorphism groups of diagonal $\mathbf Z_p$-forms of the {Lie} algebra $sl_2(\mathbf Q_p)$, $p>2$},
journal = {Algebra i logika},
pages = {406--420},
year = {2017},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a1/}
}
TY - JOUR AU - A. N. Grishkov AU - M. N. Rasskazova TI - Automorphism groups of diagonal $\mathbf Z_p$-forms of the Lie algebra $sl_2(\mathbf Q_p)$, $p>2$ JO - Algebra i logika PY - 2017 SP - 406 EP - 420 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/AL_2017_56_4_a1/ LA - ru ID - AL_2017_56_4_a1 ER -
A. N. Grishkov; M. N. Rasskazova. Automorphism groups of diagonal $\mathbf Z_p$-forms of the Lie algebra $sl_2(\mathbf Q_p)$, $p>2$. Algebra i logika, Tome 56 (2017) no. 4, pp. 406-420. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a1/
[1] N. Dzhekobson, Algebry Li, Mir, M., 1964 | MR
[2] A. V. Yuschenko, “Formy i predstavleniya algebry Li $sl_2(\mathbb Z)$”, Sib. matem. zh., 43:5 (2002), 1197–1207 | MR | Zbl
[3] A. N. Grishkov, “Predstavleniya koltsa Li $sl_2(\mathbb Z)$ nad koltsom tselykh chisel”, Sib. matem. zh., 41:6 (2000), 1338–1344 | MR | Zbl