Decompositions in complete lattices.~II. Replaceable irredundant decompositions
Algebra i logika, Tome 56 (2017) no. 3, pp. 354-366.

Voir la notice de l'article provenant de la source Math-Net.Ru

A characterization of lattices with replaceable irredundant decompositions is given in the following six classes: – the class of upper and lower continuous lattices; – the class of upper continuous join-semidistributive lattices; – the class of upper semimodular lower continuous lattices; – the class of upper semimodular join-semidistributive lattices; – the class of consistent lower continuous lattices; – the class of consistent join-semidistributive lattices.
Keywords: consistent lattice, irredundant decomposition, join-semidistributive, lattice, lower continuous, semimodular, strongly atomic, upper continuous, weakly atomic.
@article{AL_2017_56_3_a4,
     author = {M. V. Schwidefsky},
     title = {Decompositions in complete {lattices.~II.} {Replaceable} irredundant decompositions},
     journal = {Algebra i logika},
     pages = {354--366},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_3_a4/}
}
TY  - JOUR
AU  - M. V. Schwidefsky
TI  - Decompositions in complete lattices.~II. Replaceable irredundant decompositions
JO  - Algebra i logika
PY  - 2017
SP  - 354
EP  - 366
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_3_a4/
LA  - ru
ID  - AL_2017_56_3_a4
ER  - 
%0 Journal Article
%A M. V. Schwidefsky
%T Decompositions in complete lattices.~II. Replaceable irredundant decompositions
%J Algebra i logika
%D 2017
%P 354-366
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_3_a4/
%G ru
%F AL_2017_56_3_a4
M. V. Schwidefsky. Decompositions in complete lattices.~II. Replaceable irredundant decompositions. Algebra i logika, Tome 56 (2017) no. 3, pp. 354-366. http://geodesic.mathdoc.fr/item/AL_2017_56_3_a4/

[1] M. V. Semenova, “Reshetki s edinstvennymi nesokratimymi razlozheniyami”, Algebra i logika, 39:1 (2000), 93–103 | MR | Zbl

[2] M. V. Semenova, “Razlozheniya v polnykh reshetkakh”, Algebra i logika, 40:6 (2001), 685–697 | MR | Zbl

[3] R. P. Dilworth, P. Crawley, “Decomposition theory for lattices without chain conditions”, Trans. Am. Math. Soc., 96:1 (1960), 1–22 | DOI | MR | Zbl

[4] P. Crawley, “Decomposition theory for nonsemimodular lattices”, Trans. Am. Math. Soc., 99:1 (1961), 246–254 | DOI | MR

[5] P. Crawley, R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, NJ, 1973 | Zbl

[6] G. Richter, “The Kurosh–Ore theorem, finite and infinite decompositions”, Stud. Sci. Math. Hung., 17:1–3 (1982), 243–250 | MR | Zbl

[7] M. Stern, Semimodular lattices. Theory and applications, Encyclopedia Math. Appl., 73, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[8] A. Walendziak, “Meet decompositions in complete lattices”, Period. Math. Hung., 21:3 (1990), 219–222 | DOI | MR | Zbl

[9] A. Walendziak, “Join decompositions in lower continuous lattices”, Stud. Sci. Math. Hung., 28:1/2 (1993), 131–134 | MR | Zbl

[10] A. Walendziak, “Strongness in lattices”, Demonstr. Math., 27:3/4 (1994), 569–572 | MR | Zbl

[11] M. V. Semenova, K teorii poludistributivnykh reshetok, Diss. kand. fiz.-mat. nauk, Novosibirskii gos. un-t, Novosibirsk, 2000

[12] M. V. Shvidefski, “Razlozheniya v polnykh reshetkakh. III. Edinstvennye nesokratimye razlozheniya i vypuklye geometrii”, Algebra i logika (to appear)

[13] V. A. Gorbunov, “Kanonicheskie razlozheniya v polnykh reshetkakh”, Algebra i logika, 17:5 (1978), 495–511 | MR

[14] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[15] J. P. S. Kung, “Matchings and Radon transforms in lattices. I: Consistent lattices”, Order, 2:2 (1985), 105–112 | DOI | MR | Zbl

[16] M. Erné, “On the existence of decompositions in lattices”, Algebra Univers., 16:3 (1983), 338–343 | DOI | MR | Zbl