The criterion of Shmel'kin and varieties generated by wreath products of finite groups
Algebra i logika, Tome 56 (2017) no. 2, pp. 164-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a general criterion under which the equality $\operatorname{var}(A\operatorname{wr}B)=\operatorname{var}(A)\operatorname{var}(B)$ holds for finite groups $A$ and $B$. This generalizes some known results in this direction and continues our previous research [J. Algebra, 313, No. 2 (2007), 455–458] on varieties generated by wreath products of Abelian groups. The classification is based on the techniques developed by A. L. Shmel'kin, R. Burns, etc., who used critical groups, verbal wreath products, and Cross properties for studying critical groups in nilpotent-by-Abelian varieties.
Keywords: wreath products, varieties of groups, finite groups, products of varieties of groups, Abelian groups, nilpotent groups, critical groups, Cross varieties.
@article{AL_2017_56_2_a2,
     author = {V. H. Mikaelian},
     title = {The criterion of {Shmel'kin} and varieties generated by wreath products of finite groups},
     journal = {Algebra i logika},
     pages = {164--175},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_2_a2/}
}
TY  - JOUR
AU  - V. H. Mikaelian
TI  - The criterion of Shmel'kin and varieties generated by wreath products of finite groups
JO  - Algebra i logika
PY  - 2017
SP  - 164
EP  - 175
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_2_a2/
LA  - ru
ID  - AL_2017_56_2_a2
ER  - 
%0 Journal Article
%A V. H. Mikaelian
%T The criterion of Shmel'kin and varieties generated by wreath products of finite groups
%J Algebra i logika
%D 2017
%P 164-175
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_2_a2/
%G ru
%F AL_2017_56_2_a2
V. H. Mikaelian. The criterion of Shmel'kin and varieties generated by wreath products of finite groups. Algebra i logika, Tome 56 (2017) no. 2, pp. 164-175. http://geodesic.mathdoc.fr/item/AL_2017_56_2_a2/

[1] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, 4-e izd., pererab., Nauka, Fizmatlit, M., 1996 | MR

[2] M. Krasner, L. Kaloujnine, “Produit complet des groupes de permutations et le probléme d'extension de groupes. III”, Acta Sci. Math., 14 (1951), 69–82 | MR | Zbl

[3] A. Yu. Olshanskii, “On Kaluzhnin–Krasner's embedding of groups”, Algebra Discrete Math., 19:1 (2015), 77–86 | MR | Zbl

[4] H. Neumann, Varieties of groups, Ergebn. Math. Grenzg., 37, Springer-Verlag, Berlin–Heidelberg–New York, 1967

[5] G. Higman, “Some remarks on varieties of groups”, Quart. J. Math. Oxf. II Ser., 10 (1959), 165–178 | DOI | MR | Zbl

[6] R. G. Burns, “Verbal wreath products and certain product varieties of groups”, J. Aust. Math. Soc., 7 (1967), 356–374 | DOI | MR | Zbl

[7] V. H. Mikaelian, “On varieties of groups generated by wreath products of Abelian groups”, Abelian groups, rings and modules, Proc. of the AGRAM 2000 conf. (Perth, Australia, July 9–15, 2000), Contemp. Math., 273, eds. A. V. Kelarev et al., Am. Math. Soc., Providence, RI, 2001, 223–238 | DOI | MR | Zbl

[8] V. H. Mikaelian, “On wreath products of finitely generated Abelian groups”, Advances in group theory 2002, Proc. of the intensive bimester ded. to the memory of Reinhold Baer (1902–1979) (Napoli, Italy, May – June 2002), eds. F. de Giovanni et al., Aracne, Rome, 2003, 13–24 | MR | Zbl

[9] V. H. Mikaelian, “Metabelian varieties of groups and wreath products of Abelian groups”, J. Algebra, 313:2 (2007), 455–485 | DOI | MR | Zbl

[10] V. G. Mikaelyan, “Mnogoobraziya, porozhdënnye spleteniyami abelevykh i nilpotentnykh grupp”, Algebra i logika, 54:1 (2015), 103–108 | MR

[11] A. L. Shmelkin, “Spleteniya i mnogoobraziya grupp”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 149–170 | MR | Zbl

[12] G. Birkhoff, “On the structure of abstract algebras”, Proc. Cambridge Philos. Soc., 31 (1935), 433–454 | DOI | Zbl

[13] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publ. Co., New York, 1980 | MR | Zbl

[14] W. Gaschütz, “Über die $\Phi$-Untergruppe endlicher Gruppen”, Math. Z., 58 (1953), 160–170 (German) | DOI | MR | Zbl

[15] D. J. S. Robinson, A course in the theory of groups, Grad. Texts Math., 80, Springer-Verlag, New York, NY, 1995 | MR | Zbl

[16] S. Oates, M. B. Powell, “Identical relations in finite groups”, J. Algebra, 1 (1964), 11–39 | DOI | MR | Zbl