The $d$-rank of a~topological space
Algebra i logika, Tome 56 (2017) no. 2, pp. 150-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for any ordinal $\alpha$, there exists a $T_0$-space whose $d$-rank is equal to $\alpha$.
Keywords: $T_0$-space, $d$-rank.
@article{AL_2017_56_2_a1,
     author = {Yu. L. Ershov},
     title = {The $d$-rank of a~topological space},
     journal = {Algebra i logika},
     pages = {150--163},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_2_a1/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - The $d$-rank of a~topological space
JO  - Algebra i logika
PY  - 2017
SP  - 150
EP  - 163
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_2_a1/
LA  - ru
ID  - AL_2017_56_2_a1
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T The $d$-rank of a~topological space
%J Algebra i logika
%D 2017
%P 150-163
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_2_a1/
%G ru
%F AL_2017_56_2_a1
Yu. L. Ershov. The $d$-rank of a~topological space. Algebra i logika, Tome 56 (2017) no. 2, pp. 150-163. http://geodesic.mathdoc.fr/item/AL_2017_56_2_a1/

[1] O. Wyler, “Dedekind complete posets and Scott topologies”, Continuous lattices, Proc. Conf. (Bremen, 1979), Lect. Notes Math., 871, 1981, 384–389 | DOI | Zbl

[2] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Encyclopedia Math. Appl., 93, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[3] Yu. L. Ershov, “On $d$-spaces”, Theor. Comput. Sci., 224:1/2 (1999), 59–72 | DOI | MR | Zbl