The $d$-rank of a topological space
Algebra i logika, Tome 56 (2017) no. 2, pp. 150-163
It is shown that for any ordinal $\alpha$, there exists a $T_0$-space whose $d$-rank is equal to $\alpha$.
Keywords:
$T_0$-space, $d$-rank.
@article{AL_2017_56_2_a1,
author = {Yu. L. Ershov},
title = {The $d$-rank of a~topological space},
journal = {Algebra i logika},
pages = {150--163},
year = {2017},
volume = {56},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_2_a1/}
}
Yu. L. Ershov. The $d$-rank of a topological space. Algebra i logika, Tome 56 (2017) no. 2, pp. 150-163. http://geodesic.mathdoc.fr/item/AL_2017_56_2_a1/
[1] O. Wyler, “Dedekind complete posets and Scott topologies”, Continuous lattices, Proc. Conf. (Bremen, 1979), Lect. Notes Math., 871, 1981, 384–389 | DOI | Zbl
[2] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Encyclopedia Math. Appl., 93, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[3] Yu. L. Ershov, “On $d$-spaces”, Theor. Comput. Sci., 224:1/2 (1999), 59–72 | DOI | MR | Zbl