Intersection of conjugate solvable subgroups in symmetric groups
Algebra i logika, Tome 56 (2017) no. 2, pp. 135-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any solvable subgroup $G$ of an almost simple group $S$ with simple socle isomorphic to $A_n$, $n\ge5$, there are elements $x,y,z,t\in S$ such that $G\cap G^x\cap G^y\cap G^z\cap G^t=1$.
Keywords: symmetric group, almost simple group.
Mots-clés : solvable group
@article{AL_2017_56_2_a0,
     author = {A. A. Baikalov},
     title = {Intersection of conjugate solvable subgroups in symmetric groups},
     journal = {Algebra i logika},
     pages = {135--149},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/}
}
TY  - JOUR
AU  - A. A. Baikalov
TI  - Intersection of conjugate solvable subgroups in symmetric groups
JO  - Algebra i logika
PY  - 2017
SP  - 135
EP  - 149
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/
LA  - ru
ID  - AL_2017_56_2_a0
ER  - 
%0 Journal Article
%A A. A. Baikalov
%T Intersection of conjugate solvable subgroups in symmetric groups
%J Algebra i logika
%D 2017
%P 135-149
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/
%G ru
%F AL_2017_56_2_a0
A. A. Baikalov. Intersection of conjugate solvable subgroups in symmetric groups. Algebra i logika, Tome 56 (2017) no. 2, pp. 135-149. http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/

[1] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 18-e izd., In-t matem. SO RAN, Novosibirsk, 2014 http://www.math.nsc.ru/~alglog/18kt.pdf

[2] E. P. Vdovin, “On the base size of a transitive group with solvable point stabilizer”, J. Algebra Appl., 11:1 (2012), Article ID 1250015, 14 pp. | DOI | MR | Zbl

[3] The GAP Group, GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, Vers. 4.8.7, , 2017 http://www.gap-system.org

[4] http://www.math.nsc.ru/~alglog/appendix/56N2-1a.pdf

[5] T. C. Burness, R. M. Guralnick, J. Saxl, “On base sizes for symmetric groups”, Bull. Lond. Math. Soc., 43:2 (2011), 386–391 | DOI | MR | Zbl

[6] D. A. Suprunenko, Gruppy matrits, Nauka, M., 1972 | MR

[7] V. I. Zenkov, “Peresecheniya abelevykh podgrupp v konechnykh gruppakh”, Matem. zametki, 56:2 (1994), 150–152 | MR | Zbl

[8] T. C. Burness, “On base sizes for actions of finite classical groups”, J. Lond. Math. Soc. II Ser., 75:3 (2007), 545–562 | DOI | MR | Zbl

[9] E. P. Vdovin, “O peresecheniyakh razreshimykh khollovykh podgrupp v konechnykh prostykh isklyuchitelnykh gruppakh lieva tipa”, Trudy In-ta matem. mekh. UrO RAN, 19, no. 3, 2013, 62–70 | MR