Mots-clés : solvable group
@article{AL_2017_56_2_a0,
author = {A. A. Baikalov},
title = {Intersection of conjugate solvable subgroups in symmetric groups},
journal = {Algebra i logika},
pages = {135--149},
year = {2017},
volume = {56},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/}
}
A. A. Baikalov. Intersection of conjugate solvable subgroups in symmetric groups. Algebra i logika, Tome 56 (2017) no. 2, pp. 135-149. http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/
[1] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 18-e izd., In-t matem. SO RAN, Novosibirsk, 2014 http://www.math.nsc.ru/~alglog/18kt.pdf
[2] E. P. Vdovin, “On the base size of a transitive group with solvable point stabilizer”, J. Algebra Appl., 11:1 (2012), Article ID 1250015, 14 pp. | DOI | MR | Zbl
[3] The GAP Group, GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, Vers. 4.8.7, , 2017 http://www.gap-system.org
[4] http://www.math.nsc.ru/~alglog/appendix/56N2-1a.pdf
[5] T. C. Burness, R. M. Guralnick, J. Saxl, “On base sizes for symmetric groups”, Bull. Lond. Math. Soc., 43:2 (2011), 386–391 | DOI | MR | Zbl
[6] D. A. Suprunenko, Gruppy matrits, Nauka, M., 1972 | MR
[7] V. I. Zenkov, “Peresecheniya abelevykh podgrupp v konechnykh gruppakh”, Matem. zametki, 56:2 (1994), 150–152 | MR | Zbl
[8] T. C. Burness, “On base sizes for actions of finite classical groups”, J. Lond. Math. Soc. II Ser., 75:3 (2007), 545–562 | DOI | MR | Zbl
[9] E. P. Vdovin, “O peresecheniyakh razreshimykh khollovykh podgrupp v konechnykh prostykh isklyuchitelnykh gruppakh lieva tipa”, Trudy In-ta matem. mekh. UrO RAN, 19, no. 3, 2013, 62–70 | MR