Intersection of conjugate solvable subgroups in symmetric groups
Algebra i logika, Tome 56 (2017) no. 2, pp. 135-149

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any solvable subgroup $G$ of an almost simple group $S$ with simple socle isomorphic to $A_n$, $n\ge5$, there are elements $x,y,z,t\in S$ such that $G\cap G^x\cap G^y\cap G^z\cap G^t=1$.
Keywords: symmetric group, almost simple group.
Mots-clés : solvable group
@article{AL_2017_56_2_a0,
     author = {A. A. Baikalov},
     title = {Intersection of conjugate solvable subgroups in symmetric groups},
     journal = {Algebra i logika},
     pages = {135--149},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/}
}
TY  - JOUR
AU  - A. A. Baikalov
TI  - Intersection of conjugate solvable subgroups in symmetric groups
JO  - Algebra i logika
PY  - 2017
SP  - 135
EP  - 149
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/
LA  - ru
ID  - AL_2017_56_2_a0
ER  - 
%0 Journal Article
%A A. A. Baikalov
%T Intersection of conjugate solvable subgroups in symmetric groups
%J Algebra i logika
%D 2017
%P 135-149
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/
%G ru
%F AL_2017_56_2_a0
A. A. Baikalov. Intersection of conjugate solvable subgroups in symmetric groups. Algebra i logika, Tome 56 (2017) no. 2, pp. 135-149. http://geodesic.mathdoc.fr/item/AL_2017_56_2_a0/