The embedding problem for computable projective planes
Algebra i logika, Tome 56 (2017) no. 1, pp. 110-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Presented by the Program Committee of the Conference “Mal'tsev Readings”.
@article{AL_2017_56_1_a4,
     author = {N. T. Kogabaev},
     title = {The embedding problem for computable projective planes},
     journal = {Algebra i logika},
     pages = {110--117},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a4/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - The embedding problem for computable projective planes
JO  - Algebra i logika
PY  - 2017
SP  - 110
EP  - 117
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a4/
LA  - ru
ID  - AL_2017_56_1_a4
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T The embedding problem for computable projective planes
%J Algebra i logika
%D 2017
%P 110-117
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_1_a4/
%G ru
%F AL_2017_56_1_a4
N. T. Kogabaev. The embedding problem for computable projective planes. Algebra i logika, Tome 56 (2017) no. 1, pp. 110-117. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a4/

[1] Dzh. Karson, E. Fokina, V. Kharizanova, Dzh. F. Nait, S. Kuinn, K. Safranski, Dzh. Vollbaum, “Vychislimaya problema vlozhimosti”, Algebra i logika, 50:6 (2011), 707–732 | MR | Zbl

[2] W. Calvert, “The isomorphism problem for computable Abelian $p$-groups of bounded length”, J. Symb. Log., 70:1 (2005), 331–345 | DOI | MR | Zbl

[3] A. I. Shirshov, A. A. Nikitin, “K teorii proektivnykh ploskostei”, Algebra i logika, 20:3 (1981), 330–356 | MR | Zbl

[4] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | MR

[5] D. R. Hughes, F. C. Piper, Projective planes, Grad. Texts Math., 6, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl

[6] N. T. Kogabaev, “Slozhnost problemy izomorfizma vychislimykh proektivnykh ploskostei”, Vestn. NGU. Ser. matem., mekh., inform., 13:1 (2013), 68–75 | Zbl

[7] N. T. Kogabaev, “Teoriya proektivnykh ploskostei polna otnositelno spektrov stepenei i effektivnykh razmernostei”, Algebra i logika, 54:5 (2015), 599–627 | MR | Zbl

[8] M. Hall, “Projective planes”, Trans. Am. Math. Soc., 54:2 (1943), 229–277 | DOI | MR | Zbl