Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2017_56_1_a4, author = {N. T. Kogabaev}, title = {The embedding problem for computable projective planes}, journal = {Algebra i logika}, pages = {110--117}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a4/} }
N. T. Kogabaev. The embedding problem for computable projective planes. Algebra i logika, Tome 56 (2017) no. 1, pp. 110-117. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a4/
[1] Dzh. Karson, E. Fokina, V. Kharizanova, Dzh. F. Nait, S. Kuinn, K. Safranski, Dzh. Vollbaum, “Vychislimaya problema vlozhimosti”, Algebra i logika, 50:6 (2011), 707–732 | MR | Zbl
[2] W. Calvert, “The isomorphism problem for computable Abelian $p$-groups of bounded length”, J. Symb. Log., 70:1 (2005), 331–345 | DOI | MR | Zbl
[3] A. I. Shirshov, A. A. Nikitin, “K teorii proektivnykh ploskostei”, Algebra i logika, 20:3 (1981), 330–356 | MR | Zbl
[4] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999 | MR
[5] D. R. Hughes, F. C. Piper, Projective planes, Grad. Texts Math., 6, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl
[6] N. T. Kogabaev, “Slozhnost problemy izomorfizma vychislimykh proektivnykh ploskostei”, Vestn. NGU. Ser. matem., mekh., inform., 13:1 (2013), 68–75 | Zbl
[7] N. T. Kogabaev, “Teoriya proektivnykh ploskostei polna otnositelno spektrov stepenei i effektivnykh razmernostei”, Algebra i logika, 54:5 (2015), 599–627 | MR | Zbl
[8] M. Hall, “Projective planes”, Trans. Am. Math. Soc., 54:2 (1943), 229–277 | DOI | MR | Zbl